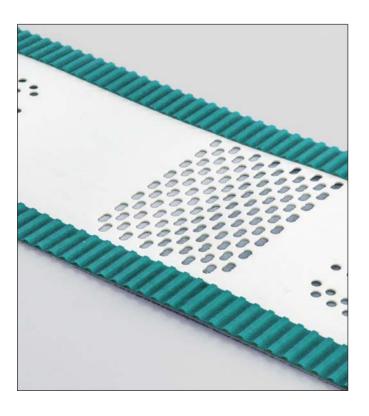

INDEX


INTRODUCTION	3
INDUSTRIES SERVED	4
PRODUCT EXAMPLE GALLERY	6
COVERS	7
Polyurethane	8
PVC	15
Rubber	18
Others	32
SPECIAL REWORKING	34
CLEATS	36
FALSE TEETH	38
PROGRESSIVE PIN JOINT SYSTEM (PPJ)	39
ENGINEERED BELTS	40
HYBRID BELTS	42
HYBRID BELTS FOR VACUUM	43
SPIRAFLEX	43
COVER - SILICONE AND NEOPRENE	44

INTRODUCTION

Megadyne, head quartered in Mathi, Italy, is a global manufacturer of rubber and polyurethane belts, with ancillary components. Commonly used in power transmission, product handling and linear positioning applications.

Founded in 1957, Megadyne developed cast polyurethane timing belts and soon afterwards extruded urethane timing belts came online. The company then entered into the rubber power transmission and conveyor belt sectors. Today Megadyne products are manufactured globally, used in all corners of the world and recognised to be world leaders.

The product range of Specialty Belts has become a crucially important part in the world of Megadyne. For more than 20 years, we have developed various Specialty Belts for our customers and have constantly expanded our production range and capabilities. In 2013, we invested in a new modern plant in Germany, to create a production and technology centre for Specialty Belts to fulfil the varied requirements from varied market sectors.

In 2014 Megadyne Group acquired Belt Corporation of America, located in Cumming GA. This acquisition enabled Megadyne, to expand its global position in the Specialty Belt product field.

In 2017 the Megadyne Group, expanded its global footprint with the acquisition of SACIF, a specialty provider of fabricated belts and the creator of Hybrid belts, designed for synchronised movement handling applications.

Starting from 2020 our production and technology centre for Specialty Belts will be placed in Italy. Efficiency and capacity improvements combined with the perspectice of a quick supply chain to fulfil the varied requirements from different industry sectors.

Today, we can provide our customers with the bespoke Specialty Belt solutions for their applications. Starting with a broad range of belt produced by Megadyne at worldwide plants, we can vertically integrate these products with our specialty belt manufacturing processes and materials to create covers, cleated belts and other design features, that address the specific demands of your application. The real strength of our Specialty Belt business, starts with our experienced and knowledgeable people. They understand the materials and application requirements. Utilising three modern manufacturing plants, as well as belt manufacturing processes that include, moulding, co extrusions, lamination, spin casting, special coverings and fabrication.

All this added together provides us with the ability to configure and build the right belt to perform to your specific requirements. Inside this Product Guide, you will find an overview of our varied materials and processes that we can offer. Whether you are an engineer starting a new project or a distributor working with an end user searching for efficiency or better belt performance, we can help.

INDUSTRIES SERVED

PACKAGING

Megadyne's portfolio of synchronous and nonsynchronous belts, include special covering materials, cleated belts, machined modifications and other fabrications, play a key role in delivering solutions for the packaging industry.

- Carton forming/box erecting/ box closing
- Filling lines
- Blow moulding machines
- Capping lines
- Carton lines
- Check weighing
- Feed lines
- Form, Fill and Seal
- Wrapping and Sealing
- Labeling

FOOD

Belts offering high speed and precision handling performance with FDA and USDA materials, designed for use where positioning, segmentation and placement of product is important.

- Meat Slicing
- Inspection Line
- Vertical Form Fill and Seal
- Horizontal Form Fill and Seal
- General Conveying
- Sausage Belts

CERAMIC, GLASS, BRICK & STONE

Belts offering high friction and excellent wear resistance. Megadyne offers elastomer and rubber materials that can be applied to your application. Cover modifications to assist in product handling, such as holes and angular or

lateral machining are commonly used in this segment.

- Grinding Machines
- Cutting Lines
- Bevelling Lines
- Drilling Lines
- Polishing Lines
- Tempering Lines
- Sealing Lines

PAPER & PRINT

From a broad range of elastomer options, Megadyne can provide the right combination of substrate and cover materials to yield wear resistance, the right coefficient of friction and anti-static requirements. Modifications such as

holes for slots, counter slots and vacuum draw down are a Megadyne specialty.

- Banking ATMs, Card Readers, Bill and Coin Changers,
- Money and Check Sorting
- Commercial Printing Equipment
- Binding Equipment
- Mail Handling Equipment
- Collating Machines
- Ticketing Machines
- Newspaper production equipment

INDUSTRIES SERVED

MATERIAL HANDLING

Megadyne works with a wide range of materials and employs state of the art manufacturing processes to deliver reliable solutions for your specific product movement need.

- Live roller conveyors
- Cross sorters
- Pallet and transport platform conveyors
- Placement convevors
- Incline convevors
- Line conveyors
- Diverters
- Offload, sorting and delivery conveyors
- ASRS systems

ROBOTICS & AUTOMATION

Urethane and rubber high strength synchronous belts are being increasingly incorporated into robotic positioning applications; these commonly include pick and place systems for packaging applications,

robotic pharmaceutical delivery systems, robotic swimming pool cleaners, security camera positioning, and automotive assembly welding systems.

- 3D Printing
- Fiber Optics
- CNC XYZ Drives
- Wire Extrusion & Stripping
- Swimming Pool Cleaners
- Security Camera Positioning
- Theatre Lighting Positioning

MEDICAL INDUSTRY

Megadyne offers a number of synchronous and non-synchronous options for both light duty power transmission and product handling applications within the medical industry. From

capsule filling, to product inspection, to pill packaging, to equipment instrumentation drives, Megadyne belts can be found.

- Medical Equipment:
 - MRI Tables
 - Blood Centrifuge
- Automated Pharmaceutical Dispensers
- Medical Instrumentation

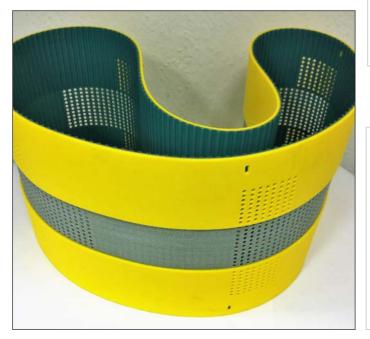
ALUMINUM EXTRUSION

Our belting products are used in a wide range of applications to ensure materials are transported successfully throughout each

stage of aluminium production. Megadyne offers tailored solutions to meet your transport requirements as well as high temperature product handling.

... AND MANY MORE...

Automotive & Tyre Riciclina


Wood

PRODUCTS EXAMPLE GALLERY

Megadyne offers a variety of polyurethanes, rubbers, foams, PVC 's and other elastomeric covers for synchronous and non-synchronous product handling.

Some cover materials are applied during the production process which results in a truly homogeneous product; others are added later, using different methods including lamination, spraying and adhesive lamination.

The choice of cover material and process used, is dependent on several factors including the application itself, the environment where the belt will operate, how product is placed on the belts and the quantity of belts needed.

All Specialty belt locations offer a wide range of Megadyne synchronous and non-synchronous substrates that can be covered with the materials listed in the following cover pages.

Additionally Megadyne technical support can assist you in choosing the right cover properties for your specific need. Covers are available for high or very low friction grip, wear and cut resistance, high temperature conveying, easy release, compressibility and shock absorption.

SYNCHRONOUS CONVEYING

Where synchronized conveying is required, Megadyne offers many traditional conveyor belt surfaces such as those shown below which can be added to Megalinear and Megaflex belts.

COVER COLOUR KEY

		-
Orange	Yellow	Blue e FDA
Pu Cream	White	Hig Duro Pink
Pu Blue	Tan	Dark Gray
Gray	Sylomer Blue	Royal Blue
 Transparent 	O Transparent Brown	Black
Red Grip	Celloflex Tan	Dark Red
Red	Dark Green	Brown
Mint Green	Blue Anti Glaze	Coral

POLYURETHANE (PU)

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

AVAFC

SAMPLE BOOK REFERENCE N°	PU 1	PU 2	PU 3
COLOURS			
RAW MATERIAL		PU	
HARDNESS (ShA)	60	70	85
COATING AND BELT COHESION METHOD		Co-extru	sion
STANDARD COVER THICKNESS RANGE (mm)		2/3/4	
TOLERANCE COVER THICKNESS		+/- 0,3	3
WORKING TEMPERATURE (°C)		-20 /+8	30
COEFFICIENT OF FRICTION (1) CoF	0,65	0,65	0,60
MIN. PULLEY DIAMETER (2)		x 40	
WATER RESISTANCE	Good	Fair	Very good
ABRASION RESISTANCE	Good	Fair	Very good
OIL RESISTANCE**	Good	Fair	Good
FOOD CONTACT APPROVED	No	No	No
	High frictio	n on	Very good wear

EATURES/BENEFITS	High friction on smooth and dry surfaces.	wear resistance. Suitable for conveying sharp-edged materials.

PU FISHBONE

PU 4
PU
70
Co-extrusion
4,3
+/- 0,5
-20 /+80
0,60
x 30
Very good
Very good
Fair
No

Suitable for wet environments where friction and drainage are necessary.

PU RIBBED

FU 5
\bigcirc

70	

PU

Co-extrusion

2,7	

+/-	0,5
1/	$_{\circ,\circ}$

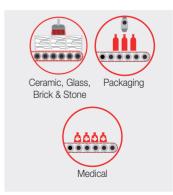
-20 /+80

0,60

x 35

Very good

Very good


Fair

No

Reduced contact point for conveying smooth products. Allows drain of liquids.

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

POLYURETHANE (PU)

NP 385

			3000		
				933	
	1	3			
				V	
0.11225	20702338	1117700		750	39

SAMPLE BOOK REFERENCE N°	PU 6
COLOURS	
RAW MATERIAL	PU
HARDNESS (ShA)	70
COATING AND BELT COHESION METHOD	Co-extrusion
STANDARD COVER THICKNESS RANGE (mm)	4
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-20 /+80
COEFFICIENT OF FRICTION (1) CoF	0,60
MIN. PULLEY DIAMETER (2)	x 40
WATER RESISTANCE	Very good
ABRASION RESISTANCE	Very good
OIL RESISTANCE**	Good
FOOD CONTACT APPROVED	No
FEATURES/BENEFITS	For oily conveyor conditions Contact only on top of the
	Noppen.

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

INDUSTRIES

RED GRIP

	PU 7				
D1.1/0			_		

PU/Synthetic Rubber
63 +/- 4

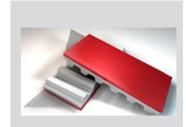
Co-extrusion

1	to 8	

+/-	0,3

-20	/+60

0,70	
x 30	


Good Very good

Very good

No

A seamless alternative to LINATEX™. Only available on MEGAFLEX.

APL RED

	n.	\circ
-	-1	\sim

PU/PVC	
55	

<u> </u>	-eytri	!	
	-AYTri	ISION	

3	5	

+/-	0 :	3
+/-	υ,	כ

-20 /+60

0,70

x 30 Good

Good

Good

No

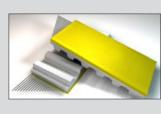
Seamless alternative to LINATEX™. Blended elastomer offering high CoF, good oil resistance.

Ceramic, Glass, Brick & Stone

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

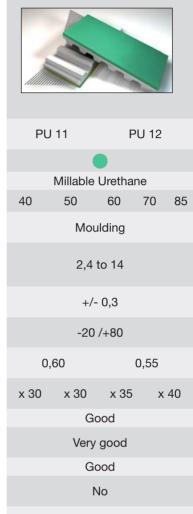
POLYURETHANE (PU)

ORANGE COVER


Z-COVER

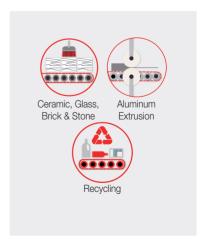
GREEN MILLABLE URETHANE

Please ask our Team for more information about avalability, minimum quantity, and delivery time.



SAMPLE BOOK REFERENCE N°	PU 9
COLOURS	
RAW MATERIAL	PU
HARDNESS (ShA)	42
COATING AND BELT COHESION METHOD	Co-extrusion
STANDARD COVER THICKNESS RANGE (mm)	3/6/9
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-25 /+65
COEFFICIENT OF FRICTION (1) CoF	0,80
MIN. PULLEY DIAMETER (2)	x 20
WATER RESISTANCE	Good
ABRASION RESISTANCE	Good
OIL RESISTANCE**	Good
FOOD CONTACT APPROVED	No
FEATURES/BENEFITS	A cover offering high grip, good wear and oil resistance. Available on MEGAFLEX only.

PU 10
PU
56
Co-extrusion
3-6
+/- 0,3
-25 /+70
0,60
x 25
Good
Good
Good
No
High density, high CoF PU foam with good resistance to



Very good abrasion resistance with high CoF. Common used in Cable and Wire Industry.

INDUSTRIES

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

POLYURETHANE (PU)

ON REQUEST TAN MILLABLE URETHANE

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

SAMPLE BOOK REFERENCE N°	PU 68
COLOURS	
RAW MATERIAL	Millable Urethane
HARDNESS (ShA)	70
COATING AND BELT COHESION METHOD	Moulding
STANDARD COVER THICKNESS RANGE (mm)	2,4 to 14
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-20 /+80
COEFFICIENT OF FRICTION (1) CoF	0,55
MIN. PULLEY DIAMETER (2)	x 35
WATER RESISTANCE	Very good
ABRASION RESISTANCE	Very good
OIL RESISTANCE**	Good
FOOD CONTACT APPROVED	No
FEATURES/BENEFITS	Very good abrasion and tear resistance.

ON REQUEST BLACK MILLABLE URETHANE

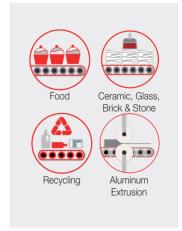
PU 69
Millable Urethane
80
Moulding
2,4 to 14
+/- 0,3
-20 /+80
0,55
x 40
Very good
Very good
Good
Yes
Vary good obrasion and toor

Very good abrasion and tear resistance. Formulated from materials compatible with FDA.

URETHANE

ON REQUEST


WHITE MILLABLE

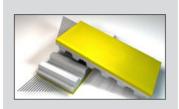

	d	-		7
"""	min	11/200	749	

A CONTRACTOR OF THE PARTY OF TH
PU 70
Millable Urethane
55
Moulding
2,4 to 14
+/- 0,3
-20 /+80
0,60
x 30
Very good
Very good
Good
Yes

High CoF, very good abrasion and tear resistance. Formulated from materials compatible with FDA.

Ceramic, Glass, Aluminum Extrusion Recycling

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.


POLYURETHANE (PU)

ON REQUEST YELLOW MILLABLE URETHANE

POLYTHAN D44

PU-YELLOW

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

SAMPLE BOOK REFERENCE N°	PU 71
COLOURS	
RAW MATERIAL	Millable Urethane
HARDNESS (ShA)	70
COATING AND BELT COHESION METHOD	Moulding
STANDARD COVER THICKNESS RANGE (mm)	2,4 to 14
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-20 /+80
COEFFICIENT OF FRICTION (1) CoF	0,55
MIN. PULLEY DIAMETER (2)	x 35
WATER RESISTANCE	Very good
ABRASION RESISTANCE	Very good
OIL RESISTANCE**	Good
FOOD CONTACT APPROVED	No

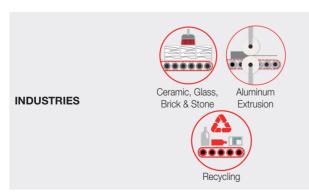
FEATURES/BENEFITS Very good abrasion and tear resistance.

PU 13
0
PU
72
Lamination
1 to 6
+/- 0,5
-10 /+60
0,70

Good resistance against Ozon and UV radiation. Due to cut resistance commonly used for conveyor of sheets panel, wood and glass.

x 30

Good


Good

Good

No

Very good abrasion resistance and and high grip against paper. Good machinability for vacuum holes and other modifications.

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

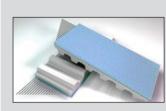
POLYURETHANE (PU)

PU-GREY/RED

CELLOFLEX

SYLOMER BLUE


Please ask our Team for more information about avalability, minimun quantity, and delivery time.


SAMPLE BOOK

DI 11/12

m	

REFERENCE N°	PU14B
COLOURS	
RAW MATERIAL	Two Component PU Foam
HARDNESS (ShA) VOLUME WEIGHT (kg/m³)	25-40 (soft) 50 (standard) 60-70 (hard)
COATING AND BELT COHESION METHOD	By Spraying
STANDARD COVER THICKNESS RANGE (mm)	1 to 10
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-10 /+60
COEFFICIENT OF FRICTION (1) CoF	0,40
MIN. PULLEY DIAMETER (2)	x 25
WATER RESISTANCE	Fair
ABRASION RESISTANCE	Very good
OIL RESISTANCE**	Good

PU 15
Micro-cellular PU
350 kg/m³
Lamination
2 to 5
+/- 0,5
-30 /+80
0,30
x 20
Poor
Fair
Poor

PU 16
PU Foam
220 kg/m³
Lamination
2 to 20
+/- 0,5
-30 /+70
0,50
x 15
Good
Poor
Poor
No

	Very good ab
	and high grip
FEATURES/BENEFITS	Good machir

FOOD CONTACT

APPROVED

brasion resistance o against paper. neability for vacuum holes and other modifications.

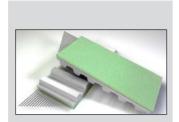
Nο

Highly flexible, good shock absorption. Use to move sensitive and fragile products. Better resistance than sylomer foams.

No

10 ShA offers high dynamic load capacity for handling of lightweight, fragile items.

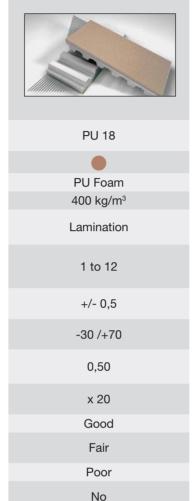
Material Handling Paper & Print **INDUSTRIES** Packaging



(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

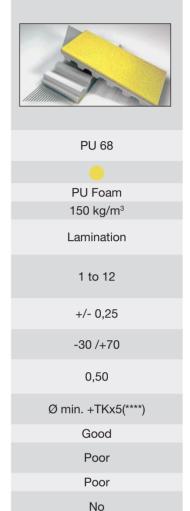
POLYURETHANE (PU)

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

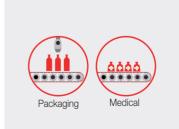

SYLOMER GREEN

SAMPLE BOOK REFERENCE N°	PU 17
COLOURS	
RAW MATERIAL	PU Foam
VOLUME WEIGHT (kg/m³)	300 kg/m ³
COATING AND BELT COHESION METHOD	Lamination
STANDARD COVER THICKNESS RANGE (mm)	2 to 25
TOLERANCE COVER THICKNESS	+/- 0,5
WORKING TEMPERATURE (°C)	-30 /+70
COEFFICIENT OF FRICTION (1) CoF	0,50
MIN. PULLEY DIAMETER (2)	x 15
WATER RESISTANCE	Good
ABRASION RESISTANCE	Poor
OIL RESISTANCE**	Poor
FOOD CONTACT APPROVED	No

FEATURES/BENEFITS


15 ShA, offers high dynamic load capacity for top pressure belts.

SYLOMER BROWN


22 ShA, offers high dynamic load capacity for moving glass.

SYLOMER YELLOW

High dynamic load capacity for movement of light and sensitive parts.

Packaging Medical Material Handling

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. **** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

PVC-FOIL BLUE

PVC-FOIL WHITE

SUPERGRIP PETROL

Please ask
our Team for more
information about
avalability, minimum
quantity, and
delivery time.

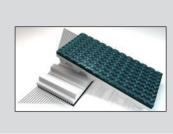
_

- 1	-		
1			
////	This was	1	

for more n about minimum nd ne.	
OK E N°	PVC 19

2

+/- 0,5


-20 /+100

0,80

60 mm

Good

Good

SAMPLEBOOK REFERENCE N°	PVC 19
COLOURS	
RAW MATERIAL	PVC
HARDNESS (ShA)	40
COATING AND BELT COHESION METHOD	Lamination
STANDARD COVER THICKNESS RANGE (mm)	2
TOLERANCE COVER THICKNESS	+/- 0,5
WORKING TEMPERATURE (°C)	-15 /+70
COEFFICIENT OF FRICTION (1) CoF	0,90
MIN. PULLEY DIAMETER (2)	40 mm
WATER RESISTANCE	Good
ABRASION RESISTANCE	Fair
OIL RESISTANCE**	Good
FOOD CONTACT AP- PROVED	No

PVC
65
Lamination

PVC 21
PVC
46
Co-extrusion Lamination
4,5
+/- 0,5
-10 /+60

0,90

60 mm

Good

Fair Good

WORKING TEMPERATURE (°C)	-15 /
COEFFICIENT OF FRICTION (1) CoF	0,0
MIN. PULLEY DIAMETER (2)	40 r
WATER RESISTANCE	Go
ABRASION RESISTANCE	Fa
OIL RESISTANCE**	Go
FOOD CONTACT AP- PROVED	N
	Good adhesion characteristics CoF and smoot

Very good	
Yes	
Good adhesion characteristics	
due to good CoF and smooth	
surface. Resistant to acids	
and oils. Formulated with	
ingredients considered FDA	

safe. Seamless weldable on

ML and MFX.

No High CoF, applicable for slight height compensation, low shock absorption capabilities. Improved adhesion even in case of moisture and dirt - for incline, feed and take-away conveying applications. Seamless weldable on ML and MFX.

due to good th surface for **FEATURES/BENEFITS** the conveyance of paper and foil, but also wood and plastics. Seamless weldable on ML and MFX

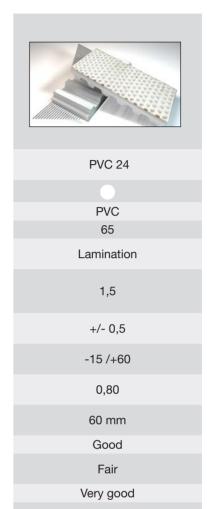
(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

PVC

SUPERGRIP WHITE

PVC-SAW TOOTH

PVC-NAPPED


Please ask our Team for more information about avalability, minimum quantity, and delivery time.

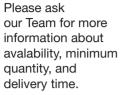
SAMPLE BOOK REFERENCE N°	PVC 22
COLOURS	
RAW MATERIAL	PVC
HARDNESS (ShA)	60
COATING AND BELT COHESION METHOD	Lamination
STANDARD COVER THICKNESS RANGE (mm)	3,5
TOLERANCE COVER THICKNESS	+/- 0,5
WORKING TEMPERATURE (°C)	-10 /+100
COEFFICIENT OF FRICTION (1) CoF	0,80
MIN. PULLEY DIAMETER (2)	60 mm
WATER RESISTANCE	Good
ABRASION RESISTANCE	Fair
OIL RESISTANCE**	Very good
FOOD CONTACT APPROVED	Yes
FEATURES/BENEFITS	Characteristics same as Supergrip petrol but less flexible for the conveyance of food. Resistant against acids and bases.

PVC 23
PVC
60
Lamination
2,5
+/- 0,5
-15 /+70
0,70
60 mm
Good
Fair
Very good
Yes

FDA clear pattern for improved adhesion under wet conditions. Line contact, resistant against acids and bases.

Thin cover offers good Cof, even in wet conditions. Resistant to acids and oils. Formulated with FDA materials.

Yes

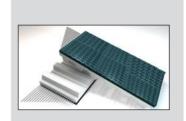

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. **** = with add. grinding +/- 0,3 mm possible. ****= Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

PVC

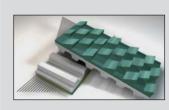
PVC-FISHBONE

MINIGRIP GREEN

STAGGERED SAWTOOTH



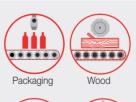
avalability, minimum quantity, and delivery time.	
SAMPLE BOOK REFERENCE N°	PVC 25
COLOURS	
RAW MATERIAL	PVC
HARDNESS (ShA)	65


COLOURS	
RAW MATERIAL	PVC
HARDNESS (ShA)	65
COATING AND BELT COHESION METHOD	Lamination
STANDARD COVER THICKNESS RANGE (mm)	3
TOLERANCE COVER THICKNESS	+/- 0,5
WORKING TEMPERATURE (°C)	-15 /+90
COEFFICIENT OF FRICTION (1) CoF	0,80
MIN. PULLEY DIAMETER (2)	60 mm
WATER RESISTANCE	Good
ABRASION RESISTANCE	Good
OIL RESISTANCE**	Very good
FOOD CONTACT APPROVED	Yes

Improved CoF in wet conditions. Narrow belts may only have a single diagonal cut profile. Resistant to acids and oils. Formulated with FDA materials.

PVC 26
PVC
60
Lamination
1,3
+/- 0,5
-10 /+70
0,70
30 mm
Good
Fair
Good
No

Thin cover structure with very good friction, even in wet or dusty conditions - reduces frictional stick of smooth and dry conveyed products. Resistant to acids and oils.


The state of the s	100
PVC 81	
•	
PVC	
46	
Lamination	
8	
+/- 0,5	
-20 /+70	
0,90	
60 mm	
Good	
Good	
Good	
No	

Very good CoF for gripping and incline conveying. Resistant to acids and oils.

INDUSTRIES

Brick & Stone

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

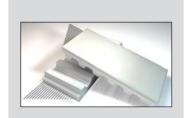
RUBBER

LINATEX™ RED

LINARD

LINAPLUS FG

Please ask our Team for more information about avalability, minimum quantity, and delivery time.



SAMPLE BOOK REFERENCE N°	RU 27	
COLOURS		
RAW MATERIAL	Natural Rubber	
HARDNESS (ShA)	38	40
COATING AND BELT COHESION METHOD	Lamination	Vulcanisation
STANDARD COVER THICKNESS RANGE (mm)	1 to10	3 to 12,7
TOLERANCE COVER THICKNESS	+/-1(***)	
WORKING TEMPERATURE (°C)	-40 /+70	
COEFFICIENT OF FRICTION (1) CoF	0,90	
MIN. PULLEY DIAMETER (2)	x 20	
WATER RESISTANCE	Good	
ABRASION RESISTANCE	Good	
OIL RESISTANCE**	Poor	
FOOD CONTACT	No	

Cover offers high CoF, good wear resistance, good wet conditions but poor **FEATURES/BENEFITS** in oil. Commonly used as discharged belts for use in vacuum VFFS.

RU 28
Natural Rubber
60
Lamination
1 to 6
+/-1(***)
-30 /+70
0,60
x 30
Good
Good
Fair
No

Cover with high abrasion resistance but less adhesion in comparison to LINATEX TM .

RU 29

Natural Rubber	
38	
Lamination	
1 to 3	
+/-1(***)	
-40 /+70	

x 25 Good Fair Poor Yes

0,75

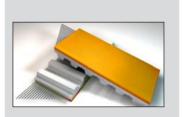
High CoF white non marking natural rubber material. Formulated with FDA materials.

APPROVED

No

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

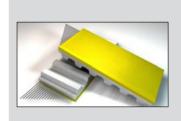
INDUSTRIES


RUBBER

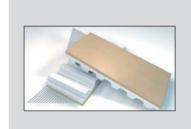
LINATRILE

RP 400 YELLOW

GUMMY CORREX AMBRA PARABLOND


Please ask our Team for more information about avalability, minimum quantity, and delivery time.

SAMPLE BOOK REFERENCE N°	RU 30	
COLOURS		
RAW MATERIAL	Polymer NBR	
HARDNESS (ShA)	55	
COATING AND BELT COHESION METHOD	Lamination	
STANDARD COVER THICKNESS RANGE (mm)	1 to 10	
TOLERANCE COVER THICKNESS	+/- 1(***)	
WORKING TEMPERATURE (°C)	-20 /+110	
COEFFICIENT OF FRICTION (1) CoF	0,70	
MIN. PULLEY DIAMETER (2)	x 25	
WATER RESISTANCE	Good	
ABRASION RESISTANCE	Good	
OIL RESISTANCE**	Good	
FOOD CONTACT APPROVED	No	
	Improved temperature oil	


FEATURES/BENEFITS

Improved temperature, oil, grease and aging resistance compared to natural rubber. Good mechanical processing capability vacuum transport of oil-covered sheets.

RU 31
Caoutchouc
38
Lamination
2 to 6
+/- 0,5
-10 /+80
0,80
x 20
Good
Good
Poor
No

Cover has fine fabric texture, characteristics similar to LINATEX™ but higher abrasion resistance.

RU 73
Natural Rubber
48
Vulcanisation
0,8 to 15
+/- 0,3
-20 /+60
0,60
x 30
Very good

Very good Poor No

Cover offers high CoF and higher abrasion resistance than LINATEX™.

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

CORREX BEIGE

SAMPLE BOOK REFERENCE N°	RU 32
COLOURS	
RAW MATERIAL	Natural Rubber
HARDNESS (ShA)	36
COATING AND BELT COHESION METHOD	Lamination
STANDARD COVER THICKNESS RANGE (mm)	2 to 6
TOLERANCE COVER THICKNESS	+/- 0,5
WORKING TEMPERATURE (°C)	-10 /+70
COEFFICIENT OF FRICTION (1) CoF	0,70
MIN. PULLEY DIAMETER (2)	x 20
WATER RESISTANCE	Fair
ABRASION RESISTANCE	Good
OIL RESISTANCE**	Poor
FOOD CONTACT APPROVED	No

FEATURES/BENEFITS

Cover offers high CoF and high wear resistant features. Similar to LINATEX™. Black contact layer.

CORREX BLACK

RU 33
•
Natural Rubber
60
Lamination
2 to 6
+/- 0,5
-10 /+70
0,60
x 30
Fair
Good
Poor
No

Cover offers good abrasion resistance and lower friction than Correx Beige.

NBR

RU 34

Nitrile (Caoutchouc
50	65 70
Lamination	Vulcanisation
2 to 6	0,8 to 15
+/- 0,5	+/- 0,3
-35 /+70	0 /+120
0,70	0,60
x 30	x 35
Very good	Good
Poor	Good
Good	Good
No	No

Cover offers improved oil and grease resistance compared to natural rubber.

INDUSTRIES

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER

EPDM

Please ask
our Team for more
information about
avalability, minimum
quantity, and
delivery time.

SAMPLE BOOK REFERENCE N°	RU 35
COLOURS	
RAW MATERIAL	Ethylene - Propylene Diene - Monomer
HARDNESS (ShA)	70
COATING AND BELT COHESION METHOD	Lamination
STANDARD COVER THICKNESS RANGE (mm)	2 to 5
TOLERANCE COVER THICKNESS	+/- 0,5
WORKING TEMPERATURE (C°)	-20 /+120
COEFFICIENT OF FRICTION (1) CoF	1,10
MIN. PULLEY DIAMETER (2)	x 35
WATER RESISTANCE	Very good
ABRASION RESISTANCE	Poor
OIL RESISTANCE**	Poor
FOOD CONTACT APPROVED	No

FEATURES/BENEFITS

Cover offers high temperature range, good chemical and aging resistance.

VITON (FKM)

Fluoropolymer

50	75
Vulcanisation	Lamination

>= 1,5	2 to

4

-20 /+360	-10 /+190

0,70

x 40

Very good

Good

Very good

No

Cover offers extremely high temperature and oil resistance.

ATTENTION: For Lamination, attention must be given to the lower temperature resistance of base belt and adhesive used.

POROL BLACK

RU 37

Natural Cellular Rubber Foam
190 kg/m³

Lamination

2 to 20

+/- 0,5

-40 /+70

1,2

x 15

Very good

Fair

Fair

No

Cover is closed cell, soft elastic cellular rubber with good wear resistance. On request with Nylon cover for bottle descrambling.

INDUSTRIES

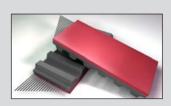
(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

TENAX 40

SAMPLE BOOK REFERENCE N°	RU 74
COLOURS	
RAW MATERIAL	Natural Rubber
HARDNESS (ShA)	40
COATING AND BELT COHESION METHOD	Vulcanisation
STANDARD COVER THICKNESS RANGE (mm)	0,8 to 15
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-20 /+60
COEFFICIENT OF FRICTION (1) CoF	0,75
MIN. PULLEY DIAMETER (2)	x 30
WATER RESISTANCE	Very good
ABRASION RESISTANCE	Very good
OIL RESISTANCE**	Poor
FOOD CONTACT APPROVED	No


FEATURES/BENEFITS

Cover is a seamless alternative to LINATEXTM. Slightly softer than Tenax Standard with higher grip. **TENAX STANDARD**

RU 75
Natural Rubber
45
Vulcanisation
0,8 to 15
+/- 0,3
-20 /+60
0,70
x 30
Very good
Very good
Poor
No

Cover is slightly harder than Tenax 40, but offers very good abrasion resistance. **TNX RED**

RU 38
NR/BR
50
One Shot Curing
<=16 (*)
+/- 0,3
-20 /+60
0,70
Ø min. +TKx5(****)
Fair
Good
Poor

Harder than Tenax Standard. Available on one shot rubber belts only.

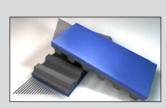
No

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER

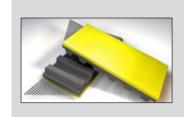
BLUE GRIP

Please ask our Team for more information about avalability, minimum quantity, and delivery time.


SAMPLE BOOK

REFERENCE N°	RU 39
COLOURS	
RAW MATERIAL	NR/BR
HARDNESS (ShA)	57
COATING AND BELT COHESION METHOD	One Shot Curing
STANDARD COVER THICKNESS RANGE (mm)	<=12,5 (*)
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-20 /+80
COEFFICIENT OF FRICTION (1) CoF	0,80
MIN. PULLEY DIAMETER (2)	Ø min. +TKx5(****)
WATER RESISTANCE	Fair
ABRASION RESISTANCE	Very good
OIL RESISTANCE**	Fair
FOOD CONTACT APPROVED	No
FEATURES/BENEFITS	Very good wear resistance. Alternative to LINATEX™. Only available on rubber base
	Offiny available off fubbel base

belts.


HTX (SILBLUE)

RU 40
Silicone
64
One Shot Curing
<=12 (*)
+/- 0,3
0 /+175
1,60
Ø min. +TKx5(****)
Very good
Fair
Good
No
Cavar affara high tamparatura

Cover offers high temperature and UV resistance. Non-marking compound common used in printing applications. Only available on rubber base belts.

YELLOW GUM R14

Rι	J	41

Natural Rubber	

35-45 One Shot Curing

1	.6	to	12

+/- 0,3

-25 /+85

0,80

Ø min. +TKx5(****)

Good

Very good

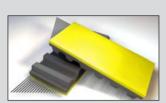
Poor

No

Cover offering high CoF, very good wear resistance. Compound common used in indexing, corrugating, positioning and packaging applications. Only available on rubber base belts.

INDUSTRIES

Material Handling



(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

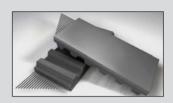
RUBBER

YELLOW NEOPRENE R15

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

SAMPLE BOOK REFERENCE N°	RU 58	
COLOURS		
RAW MATERIAL	Polychloroprene	
HARDNESS (ShA)	35-45	
COATING AND BELT COHESION METHOD	One Shot Curing	
STANDARD COVER THICKNESS RANGE (mm)	1,0 - 13,0	
TOLERANCE COVER THICKNESS	+/- 0,3	
WORKING TEMPERATURE (°C)	-25 /+80	
COEFFICIENT OF FRICTION (1) CoF	0,65	
MIN. PULLEY DIAMETER (2)	Ø min. +TKx5(****)	
WATER RESISTANCE	Good	
ABRASION RESISTANCE	Good	
OIL RESISTANCE**	Good	
FOOD CONTACT APPROVED	No	
FEATURES/BENEFITS	Cover offering a Neoprene alternative for applications requiring better resistance to heat, oils, greases, solvents. Only available on rubber base	

belts.


HIGH DURO NEOPRENE R18

RU 59
•
Polychloroprene
70-80
One Shot Curing
1,0 - 13,0
+/- 0,3
-20 /+80
0,60
Ø min. +TKx5(****)
Good
Good
Good
No

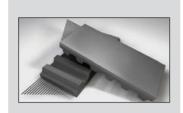
Cover offering a high ShA, black non-marking neoprene compound. Only available on rubber base belts.

50 DURO GRAY NEOPRENE R23

RU 60
•
Polychloroprene
50-60
One Shot Curing
1,0 - 13,0
+/- 0,3
-25 /+80
0,65
Ø min. +TKx5(****)
Good
Good
Good
No

Cover offering a medium ShA, non-marking compound, good heat resistance, CoF properties and color stability. Only available on rubber base belts.

INDUSTRIES


Packaging Material Handling

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. **** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER

65 DURO GRAY NEOPRENE R24

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

RU 61
Polychloroprene
60-70
One Shot Curing
1,0 - 13,0
+/- 0,3
-25 /+80
0,65
Ø min. +TKx5(****)
Good
Good
Good
Yes
Cover offering medium ShA, non-marking compound. Formulated with FDA materials. Only available on rubber base belts.

HIGH DURO PINK NEOPRENE R25

RU 62					
Polychloroprene					
65-75					
One Shot Curing					
1,0 - 13,0					
+/- 0,3					
-20 /+90					
0,60					
Ø min. +TKx5(****)					
Good					
Good					
Good					
No					
Cover offering non-marking					

LOW DURO BLACK NEOPRENE R35

RU 63
•
Natural Rubber
40-50
One Shot Curing
1,0 - 13,0
+/- 0,3
-20 /+85
0,55
Ø min. +TKx5(****)
Good
Fair
Good
No

Cover offering high friction, non-marking feature. Only available on rubber base belts.

INDUSTRIES

compound. Good friction

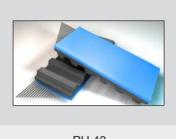
resistance. Only available on

properties and heat

rubber base belts.

Packaging Material Handling

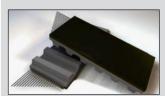
⁽¹⁾ Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.


RUBBER

65 DURO RED **NITRILE/PVC**

Please ask our Team for more information about avalability, minimum quantity, and delivery time.	
SAMPLE BOOK	RU 42

SAMPLE BOOK REFERENCE N°	RU 42
COLOURS	
RAW MATERIAL	Nitrile - PVC
HARDNESS (ShA)	63 - 70
COATING AND BELT COHESION METHOD	One Shot Curing
STANDARD COVER THICKNESS RANGE (mm)	1,6 - 12
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-10 /+110
COEFFICIENT OF FRICTION (1) CoF	0,80
MIN. PULLEY DIAMETER (2)	Ø min. +TKx5(****)
WATER RESISTANCE	Good
ABRASION RESISTANCE	Fair
OIL RESISTANCE**	Very good
FOOD CONTACT APPROVED	No


BLUE FDA NEOPRENE 65

RU 43
Polychloroprene
63 -73
One Shot Curing
1,6 - 12
+/- 0,3
-35 /+105
0,80
Ø min. +TKx5(****)
Good
Very good
Good
Yes
Cover offers good resistance to

weather and ozone environments. Self extinguishing. Good resistance to acid solutions. Formulated with FDA materials. Only available on rubber base belts.

STATIC **DISSIPATING NEOPRENE ISEPO**

RU 65
•
Polychloroprene
67-77
One Shot Curing

1,0 - 13,0	
------------	--

-20 /+80 0,60

Ø min. +TKx5(****)

Good Good

Good

No

Cover used on belts requiring high conductivity. Compound exceed the ISO/RMA classification for antistatic, static dissipating belts. Only available on rubber base belts.

Material Handling **INDUSTRIES** Packaging

belts.

Cover offers a blended

compound feature provides

and good CoF, along with

good oil resistance. Only

available on rubber base

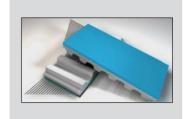
(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

FEATURES/BENEFITS

RUBBER

LOW DURO WHITE NEOPRENE R92

TAN NATURAL **RUBBER 40**


BLUE ANTI GLAZE NATURAL RUBBER

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

	-			
	-	30		
À				
	Marin	-		

RU 44

SAMPLE BOOK
REFERENCE N°

RAW MATERIAL

HADDNESS (ShA)

RU 66

RU 45

C	0	L	0	U	R	3

Polychloroprene
35-45

Natural Rubber 40

TIATIBITE CO (CITA)			
COATING AND BELT			
COHESION METHOD			

One Shot Curing

Vulcanisation

Vulcanisation

STANDARD COVER THICKNESS RANGE

1,0 - 10,0

2,4 to 14

-20 /+80

Good

Poor

No

2,4 to 14

TOLERANCE COVER THICKNESS

+/- 0.3

-20 /+90

0,65

WORKING **TEMPERATURE (°C)** +/- 0.3

+/- 0.3

COEFFICIENT OF FRICTION (1) CoF

-20 /+80

MIN. PULLEY

0.60

0.55

DIAMETER (2) WATER RESISTANCE Ø min. +TKx5(****) x 20 x 20

ABRASION RESISTANCE

Good

Good

OIL RESISTANCE**

Good Good

Good

Good

FOOD CONTACT APPROVED

Yes

Poor No

FEATURES/BENEFITS

Cover offers low ShA non marking compound, offers high CoF and good wear resistance. Formulated with FDA materials. Only available

on rubber base belts.

Cover offers non marking high CoF surface. Average wear and tear and abrasion resistance.

Cover offers a high Cof and good wear resistance. Anti glazing characteristic predestinated for high speed paper feeder.

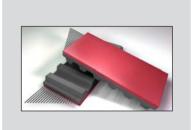
Packaging **INDUSTRIES** Material Handling

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER

DURATAQTM

DURATAQTM PLUS


RED NATURAL RUBBER 40

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

	The	

"	· · · · · · · · · · · · · · · · · · ·		

SAMPLE BOOK REFERENCE N°	RU 46
COLOURS	
RAW MATERIAL	Natural Rubber
HARDNESS (ShA)	45
COATING AND BELT COHESION METHOD	Vulcanisation
STANDARD COVER THICKNESS RANGE (mm)	2,4 to 14
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-20 /+100
COEFFICIENT OF FRICTION (1) CoF	1,10
MIN. PULLEY DIAMETER (2)	x 20
WATER RESISTANCE	Good
ABRASION RESISTANCE	Very good
OIL RESISTANCE**	Poor
FOOD CONTACT APPROVED	No

RU 76
Natural Rubber
60
Vulcanisation
2,4 to 14
+/- 0,3
-20 /+100
0,6
x 30
Good
Very good
Poor
No

RU 47
Natural Rubber
40
Vulcanisation
2,4 to 14
+/- 0,3
-20 /+80
0,50
x 20
Good
Fair
Poor
No

FEATURES/BENEFITS

Cover is an alternative to LINATEX™ offering a custom blended proprietary rubber which has a high CoF and very good abrasion resistance.

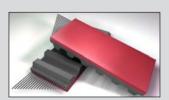
Cover offers a proprietary custom blended rubber which has a good CoF and very good abrasion resistance.

Cover offering low durometer ShA and very good high friction.

Packaging Ceramic, Glass, **INDUSTRIES** Brick & Stone Material Handling

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER


RED NATURAL RUBBER 60

WHITE NITRILE 40

BLACK NEOPRENE

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

SAMDI E BOOK

Times !		

		4	
	A		
m		Man .	1
	Illing	The state of the s	

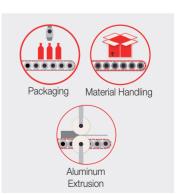
REFERENCE N°	RU 77
COLOURS	
RAW MATERIAL	Natural Rubber
HARDNESS (ShA)	60
COATING AND BELT COHESION METHOD	Vulcanisation
STANDARD COVER THICKNESS RANGE (mm)	2,4 to 14
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-20 /+100
COEFFICIENT OF FRICTION (1) CoF	0,5
MIN. PULLEY DIAMETER (2)	x 30
WATER RESISTANCE	Good
ABRASION RESISTANCE	Good
OIL RESISTANCE**	Poor
FOOD CONTACT APPROVED	No

RU 49
Carboxilate Nitrile
40
Vulcanisation
2,4 to 14
+/- 0,3
-20 /+120
0,70
x 25

Good Good Very good Yes

RU 50				
Neoprene				
50	70			
Lamination	Vulcanisation			
3-12	0,8 to 15			
+/- 0,3				
-20 /+60	-10 /+100			
0,60				
x 30				
Good				
Good				
Go	ood			
No				

FEATURES/BENEFITS


Covers offering good friction and good abrasion resistance. Higher abrasion resistance than NATURAL RUBBER 40.

Cover offering the benefit high friction and good wear resistance. The very good oil resistance in moderate temperature up to +120°C offers a wide range of applications.

Cover offering high CoF and moderate abrasion / water / oil resistance in ambient temperatures.

Packaging Material Handling **INDUSTRIES**

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER

BLUE NATURAL RUBBER 55

GREEN NITRILE 55

TAN NEOPRENE 55

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

SAMPLE BOOK REFERENCE N°	RU 51
COLOURS	
RAW MATERIAL	Natural Rubber
HARDNESS (ShA)	55
COATING AND BELT COHESION METHOD	Vulcanisation
STANDARD COVER THICKNESS RANGE (mm)	2,4 to 14
TOLERANCE COVER THICKNESS	+/- 0,3
WORKING TEMPERATURE (°C)	-20 /+80
COEFFICIENT OF FRICTION (1) CoF	0,40
MIN. PULLEY DIAMETER (2)	x 25
WATER RESISTANCE	Good
ABRASION RESISTANCE	Good
OIL RESISTANCE**	Poor
FOOD CONTACT APPROVED	No

URES/BENEFITS	Cover offering high CoF, good wear resistance, very good water resistance.

NO 32
Nitrile
55
Vulcanisation
2,4 to 14
+/- 0,3
-20 /+120
0,70
x 30
Good
Very good
Very good
No

Cover offering high CoF and moderate abrasion / water / oil resistance in ambient temperatures.

RU 53
Neoprene
55
Vulcanisation
2,4 to 14
+/- 0,3
-20 /+120
1,60
x 30
Good
Good
Good
No

Cover offers high CoF and good wear resistance.

INDUSTRIES

FEAT

Material Handling Ceramic, Glass, Brick & Stone

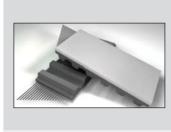
(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

RUBBER

HONEYCOMB

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

FEATURES/BENEFITS


SAMPLE BOOK REFERENCE N°	RU 78		
COLOURS			
RAW MATERIAL	Natural Rubber		
HARDNESS (ShA)	50		
COATING AND BELT COHESION METHOD	Lamination		
STANDARD COVER THICKNESS RANGE (mm)	4,5 to15		
TOLERANCE COVER THICKNESS	+/-0,5		
WORKING TEMPERATURE (°C)	-20 /+60		
COEFFICIENT OF FRICTION (1) CoF	0,60		
MIN. PULLEY DIAMETER (2)	x 30		
WATER RESISTANCE	Very good		
ABRASION RESISTANCE	Very good		
OIL RESISTANCE**	Poor		
FOOD CONTACT APPROVED	No		
	Cover offering high friction rough top surface, applicable for slight height compensation, low shock		

INDUSTRIES	Packaging Material Handling
	Wood

absorption capabilities. Improved

adhesion even in case of moisture

and dirt for use on lower angle incline product movement.

70 DURO GREY

HNBR - HTG

RU 80
HNBR
66-76
One Shot Curing
1 - 10
+/- 0,3
-30 /+150
0,55
Ø min. +TKx5(****)
Good
Good
Very Good
No

Cover offers higher temperature applications where UV resistance is needed. Only availabe for 8M, H and T10 belt profiles. Only available on rubber base belts.

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

OTHERS

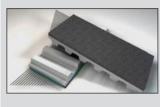
NFB/NFT

TT60

CHROME LEATHER

Please ask our Team for more information about avalability, minimum quantity, and delivery time.

FOOD CONTACT


APPROVED

SAMPLE BOOK REFERENCE N°	OTH 54
COLOURS	(Antistatic)
RAW MATERIAL	Nylon Fabric
HARDNESS (ShA)	-
COATING AND BELT COHESION METHOD	Co-extrusion Lamination
STANDARD COVER THICKNESS RANGE (mm)	0,15
TOLERANCE COVER THICKNESS	0,6 by Laminating
WORKING TEMPERATURE (°C)	-20 /+80
COEFFICIENT OF FRICTION (1) CoF	0,25
MIN. PULLEY DIAMETER (2)	According to the cover FEATURES.
WATER RESISTANCE	Good
ABRASION RESISTANCE	Fair
OIL RESISTANCE**	Fair

NFT/NFB offers low friction for accumulation as well as low noise benefits and is usually applied Co-FEATURES/BENEFITS extrusion on base belts. In this case the min. pulley diameters indicated for each belt type and pitch are valid. Antistatic version available.

No

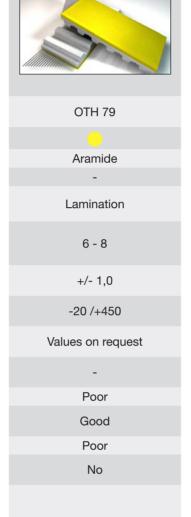
OTH 55
••
Felt
55
Lamination
2
+/- 1
-10 /+120
0,40
120 mm
Poor
Very good
Fair
No
Antistatic cover provides a soft

Antistatic cover provides a soft, non-marking, and good oil resistance surface for moving sharp, oily surface parts. Works well downline in complement to Kevlar® for higher temperature conveying.

071150
OTH 56
Leather
65
Lamination
2 to 3
+/- 0,5
0 /+60
0,40
x 50
Good
Good
Good
No

Cover has a roughened surface that offers very good oil / grease resistance and good cut resistance for moving sharp oily parts.

(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. In case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.


OTHERS

SILICONE*

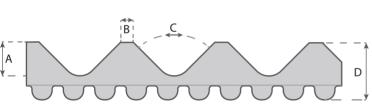
Please ask our Team for more information about avalability, minimum quantity, and delivery time.

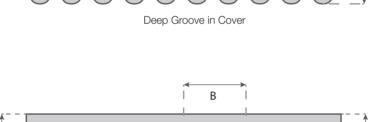
delivery time.			
SAMPLE BOOK REFERENCE N°	OTH 57		
COLOURS			
RAW MATERIAL	Silicone		
HARDNESS (ShA)	25 to 70		
COATING AND BELT COHESION METHOD	See Coating Section page 44		
STANDARD COVER THICKNESS RANGE (mm)	0,5 - 10		
TOLERANCE COVER THICKNESS	+/- 0,3		
WORKING TEMPERATURE (°C)	-40 /+230*		
COEFFICIENT OF FRICTION (1) CoF	Values on request		
MIN. PULLEY DIAMETER (2)	x 20		
WATER RESISTANCE	Good		
ABRASION RESISTANCE	Poor		
OIL RESISTANCE**	Good		
FOOD CONTACT APPROVED	Yes		
FEATURES/BENEFITS	Cover offers high temperature resistance, excellent grip and ease of product release, making cleanup of materials such as adhesives easy. Formulated with FDA materials. *Temperature resistance depends on silicone type. For more details ask to our team.		

KEVLAR® FELT

Excellent heat resistance for high temperature applications such as aluminum extrusion

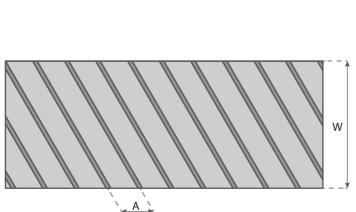
(1) Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover. (2) Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.. *= total belt thickness. **= the resistance to lubricant oil strongly depends by additive package, chemical nature of the oil and viscosity. in case of very sensitive applications, an additional check must be considered. *** = with add. grinding +/- 0,3 mm possible. **** = Ø min. is the minimum allowable diameter in mm for the base belt and TK the total thickness of the belt +coating.

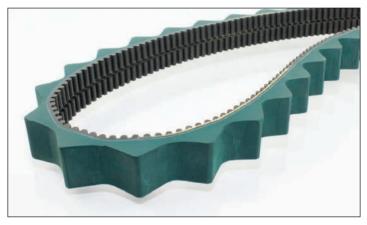

MODIFICATIONS


CUSTOM COVER MODIFICATIONS

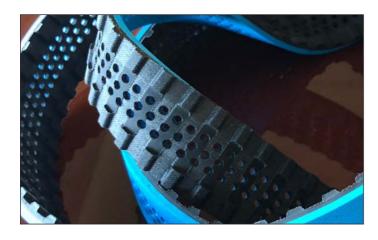
Enhanced processes, skilled personnel, an innovative spirit and ongoing capital equipment investments, enable Megadyne to stay at the forefront of new design developments and solution delivery to customers across the spectrum of industries we serve. Let a Megadyne Technical Sales Representative or Application Engineer create the right belt to deliver optimum performance for your application.

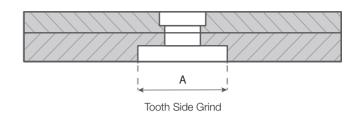
In addition to the materials and process selection of the base belt, Megadyne can fully customise our belts with the following machined modifications:

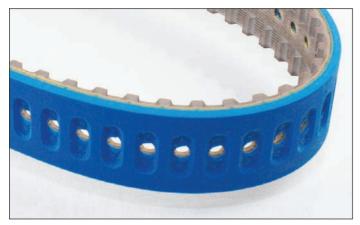

- Custom shapes
- Grinding
- Notching/Knife Cut
- Fabric added to the tooth side of belt
- Vacuum Countersinks •
- Holes/Perforations
- **Pockets**
- Slots
- Saw Tooth
- Grooves
- Water cut

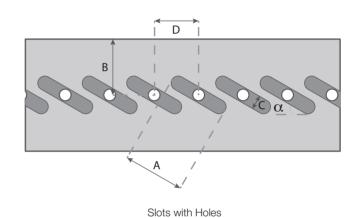

Countersink with Punch

Diagonal Sipes

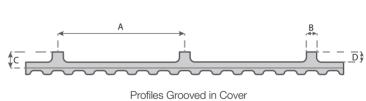


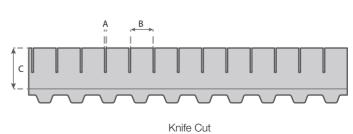






MODIFICATIONS





CLEATS

MEGALINEAR and MEGAFLEX timing belts can be customised with profiles welded on the backside of the belt.

All cleats, whether injection moulded or CNC machined are made with thermoplastic polyurethane.

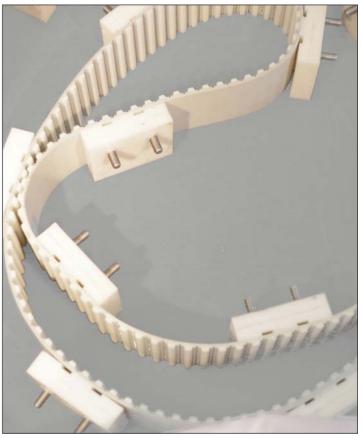
Cleat Design is determined by the application requirements of the cleat and the size of the product required. Using our flexible production capabilities Megadyne can design any cleat shape to meet the specific requirements of the customer:

- CNC machined from thermoplastic PU sheet
- Injection moulded
- The cleats are attached by using high frequency vibration, hot blade, infrared welding or chemical bonding.

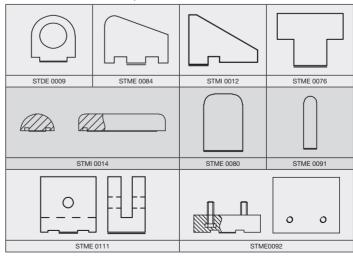
CLEAT MATERIALS

Our standard cleat is made with 92° ShA white polyurethane. This material is also used to produce MEGALINEAR and MEGAFLEX timing belt. Cleats can also be supplied in different durometers and in alternative urethane colours. Contact Megadyne for more details.

In applications where a hard and wear resistant cleat is required, a harder durometer like 96 ShA can be provided. Additionally, Megadyne can mould glass fibre reinforced polyurethane. For additional specials including elastomers with metal inserts, contact Megadyne to discuss your application specific needs.


In addition to our standard 92 ShA or harder 96 ShA urethane, Megadyne can provide EU Food compliant, FDA compliant blue or transparent polyurethane for the food and pharmaceutical industry with a hardness of 85 ShA. Blue cleats made with the same FDA material as our blue belt are available to ensure materials compatibility for use in food applications. Selection of the cleat material can be also dependant on the environment temperature (at low ambient temperatures low hardness is recommended). In general, individual cleat colours deviating from the standard can be produced according to indicated RAL number and under consideration of a min. quantity.

LOOKING FOR CUSTOM CLEATS?


Are you looking for a different profile other than those shown above? We have many different profiles, including custom, for your belt application.

Contact our team for more information.

Some cleats Examples

DIMENSIONAL TOLERANCES

The dimensional accuracy of injection-moulded cleats depends on the shrinking behaviour of the selected polyurethane and the size and shape of the cleat.

- Injection-moulded cleats have a general tolerance of up to +/- 0.3 mm.
- Mechanically processed cleats have a general dimension tolerance of up to +/- 0.5 mm.
- Smaller tolerances can be achieved depending on the cleat material and must by requested case by Case

METHODS USED TO WELD CLEATS (HIGH FREQUENCY, INFRARED & HOT BLADE)

Depending on the shape and quantity of cleats to be welded, thermoplastic cleats can be welded using one of several options. When heating the cleat and base belt, polyurethane melts and creates a bead around the welding point

To avoid any negative impact of this bead on the transport side it will be cleaned accordingly to secure the precise positioning of the transport goods.

In some specific cases, a suitable tool is needed to fully remove the welding bead. The cleaning of welding beads on cleats with glass-fibre reinforcement should be avoided in general.

In some specific cases, a suitable tool is needed to fully remove the welding bead. The cleaning of welding beads on cleats with glass-fibre reinforcement should be avoided in general. Additional to the bead the welded cleat loses height during the welding process. This height loss is called burn-off and is taken into consideration during cleat design and production.

COLD WELDING (CHEMICAL BONDING)

During chemical bonding, the thermoplastic polyurethane cleat is permanently connected with the thermoplastic polyurethane base belt.

Chemical bonding is preferably used for flat, round and thin-walled cleats, as in contrary to the hot welding no material melts off, no welding beads and no burn-off occurs.

Glass-fibre reinforced polyurethanes cannot be chemically bonded.

SPECIAL CLEAT DESIGNS

Megadyne can use components made from food contact approved conveyor belts as cleats, applied with high-frequency technology to TPU timing belt. This hybrid construction is perfect for food applications, such as fruit conveying.

FALSE TEETH

Our False Tooth product is designed to provide an easy mechanical attachment option for placement of cleats and other profiles and shapes to H, AT10 and AT20 pitches. False teeth can be added to Megalinear endless joined/ open end, Megaflex truly endless and Megapower urethane timing belts.

The use of our false teeth concept is a smart design solution where mechanical attachments can be used to offer flexibility of adjustment and positioning in applications where sortation, actuation and product separation is needed such as in pick and place systems, inserting and cartoning machines found in the packaging industry. Megadyne's false tooth attachment option provides a method to reposition or replace broken cleats without the need to replace belts, thus saving time and money.

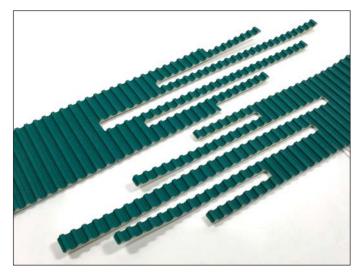
Additionally, False Teeth used to mount mechanical attachments and can be a solution in applications where the forces placed against conventional weld on cleats are too high and not robust enough to withstand the loads placed on them, which can lead to pull off failure.

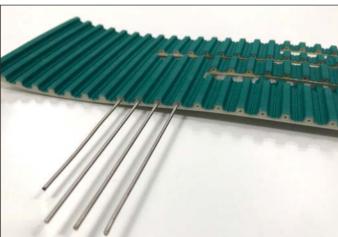
Megadyne standard false tooth material is AISI 304 Stainless steel.

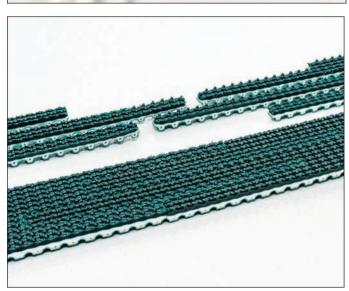
Contact Megadyne to discuss other material options.

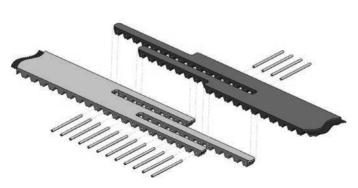
ADVANTAGES OF MEGADYNE FALSE TEETH:

- · Easy installation and removal of cleats
- Precise profile positioning
- Reduction cost in assembly and maintenance:
- · Low cost cleat spare part in case of wear and tear
- No removal of belt needed to replace cleats
- Different cleat materials can be used
- Stainless steel false teeth suitable for food & pharmaceutical industry
- Available with NFT/NFB, FDA Urethane and with steel aramid or stainless steel cords. Self tracking belts can also be provided.
- Available on MEGALINEAR JOINED, MEGAFLEX and MEGAPOWER in all possible executions as NFT or NFB, FDA, steel, aramid or stainless steel cord, with or without self-tracking guide






AVAILABLE ON FOLLOWING BELTS:


Pitch and Width	Hole Spacing (mm)	# of Holes	Diameter of Hole (mm)	Post Thread Size
H50	25	2	6 +/-0,3	M4
25AT10	12 +/-0,2	2	6 +/-0,3	M4
32AT10	20 +/-0,2	2	6 +/-0,3	M4
50AT10	25 +/-0,2	2	6 +/-0,3	M4
75AT10	25 +/-0,2	3	6 +/-0,3	M4
100AT10	25 +/-0,2	4	6 +/-0,3	M4
25AT20	-	1	7.5 +/-0,3	M5
32AT20	20 +/-0,2	2	7.5 +/-0,3	M5
50AT20	25 +/-0,2	2	7.5 +/-0,3	M5
75AT20	25 +/-0,2	3	7.5 +/-0,3	M5
100AT20	25 +/-0,2	4	7.5 +/-0,3	M5

PROGRESSIVE PIN JOINT SYSTEM (PPJ)

Megadynes' Progressive Pin Joint (PPJ) system is designed to allow the user a simple, reliable method of placing a timing belt on an application without the need to tear apart the conveyor or join the belt endless on line. PPJ is a perfect option for parallel path belts where the load being moved is spread across several belts. Installation and replacement of belts is fast, simple and cost saving.

PPPJ is available for the following belt types:

PPJ AVAILABILITY				
BELT TYPE	WIDTH (mm)	BELT TYPE	WIDTH (mm)	
T10/AT10	25	T20/AT20/ATG20	75	
TG10 K6	25	MTD8/RPP8	20	
T10/AT10	32	MTD8/RPP8	30	
T10/AT10	50	MTD8/RPP8	50	
T10/AT10	75	MTD8/RPP8	85	
T10/AT10	100	MTD8/RPP8	100	
TG10/ATG10	50	MTD14	55	
T20/AT20	32	MTD14	85	
T20/AT20	50	H075	19,05	
HG150	38,1	H100	25,4	
HG200	50,8	H200	50,8	

For different widths and/or lengths please ask to our technical Team.

AVAILABLE PITCHES AND CORD TYPES

Standard	HF	Stainless steel
T10, AT10, TG10 ATG10, T20 AT20, MTD8, RPP8	T10, AT10, T20, AT20	T10, AT10, TG10, ATG10, MTD14

AVAILABLE COVERS FOR PPJ BELTS

NFT/NFB

AVAFC 60/70/85

APL RED

FISHBONE

RIBBED

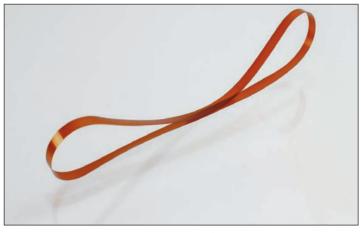
SUPERGRIP PETROL

ENGINEERED BELTS

Advanced materials that offer strong, durable, and temperature resistant properties, coupled with unique manufacturing processes developed at Megadyne enable us to custom engineer belts for the most demanding drives across a wide range of product handling applications. Below is a listing of materials designed to offer superior benefits for use in industries ranging from business machines, to aerospace, to medical.

Manufacturing capabilities exist to spin cast, mould, wrap, ultrasonically weld, punch, grind, slit, and moulded materials to create virtually any endless belt configuration you can imagine.

	FILM ULTRASON	IIC WELDING	S	PIN CASTING		VULCANISATION
Material	Mylar®	Kapton [®]	Hytrel®	Urethane	Silicone	Reinforced Silicone
Hardness (Shore A)	N/A	N/A	30/40/50/60/70	10/90	55	40
Colour						
Thickness Range	0.003-0.014"	0.001-0.005"	0.010 to 0.040"	0.020 to 0.125"	0.5 to 12 mm	1 mm
Working Temp Range (°C)	-70/+160	-100/+380	-40/+100	-20/+80	-40/+230	-40/+230
Water Resistance	Fair	Fair	Fair	Fair	Fair	Fair
Abrasion Resistance	Good	Good	Fair	Fair	Poor	Poor
OIL RESISTANCE**	Fair	Good	Good	Fair	Poor	Poor
FOOD CONTACT APPROVED	Yes	Yes	No	No FDA on request	Contact Cu	ustomer Support
Other Benefits	Electrical Insulation	UL94 VO Fire Rating	High Flex Fatigue Resistance	Hydrolytic Stability	Low Coefficient of Friction	Heat/Cold Resistance
Mylar®, Kapton® and Hytrel® are registered trademarks of DuPont						

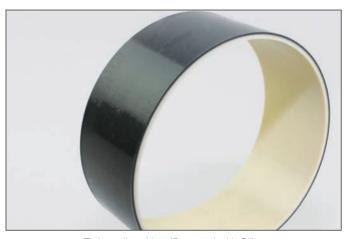


Urethane with tracking guide

ENGINEERED BELTS

Truly endless Kapton®

Truly endless Hytrel®

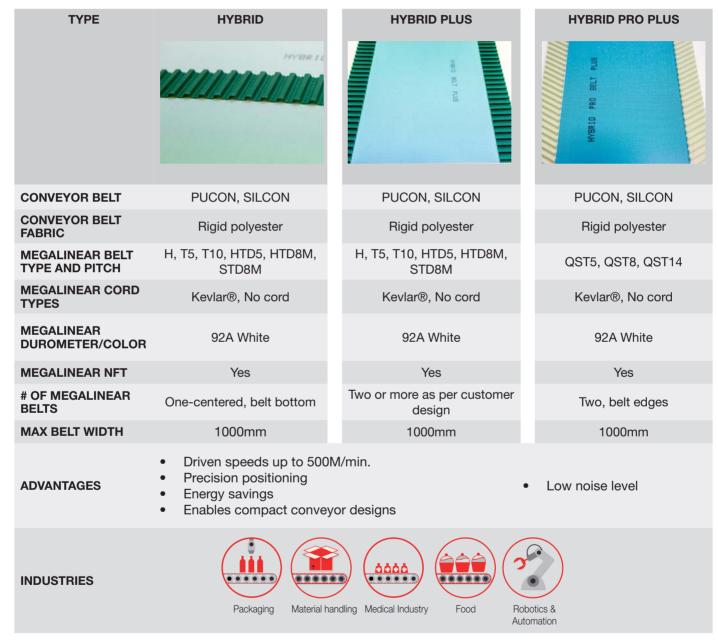

Truly endless Silicone

Reinforced Silicone with guide

Foam

Truly endless Hytrel® coated with Silicone

Truly endless Urethane with tabs



Truly endless dual durometer Urethane and Natural Rubber

HYBRID BELTS

Hybrid belts deliver synchronization and conveying features in one belt design. Starting with Megadyne conveyor belts we add extruded timing belts to provide precise positioning and accurate tracking.

Hybrid, Hybrid Plus and Hybrid Pro belts are available with polyurethane or silicone covers and available with the following urethane belt pitches-H, T5, T10, HTD5, HTD8 STD8, QST5, QST8 and QST14. Consult Megadyne for other pitch and tooth shape requests

MAIN MODIFICATION AND SPECIAL REWORKING

Perforation & Holes

42

Perforation & Holes

Cleats

HYBRID BELTS FOR VACUUM

Hybrid Vacuum is a unique design where synchronization and an open mesh used for drainage or vacuum are combined into one belt design.

SPIRAFLEX

SPIRAFLEX are grid conveyor belts, specially used for the removal of the product in the hygienic machinery lines and for transport of fresh pasta and liquorice.

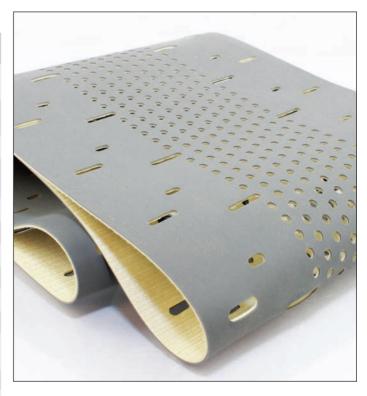
In the food industry, Spiraflex replaced the previously traditional metal wire mesh conveyor belts. In the case of conveying fresh pasta or dough, thanks to its properties, Spiraflex allows the steam sprayed by the machinery inside a tunnel, to eliminate the residual flour of the product.

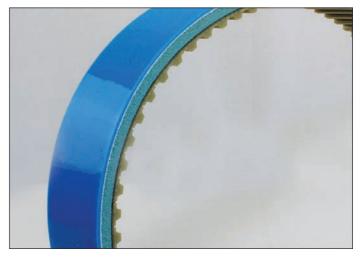
In the case of liquorice transport Spiraflex resists to the steam used to get a glossy finish on the surface of product.

TYPE	HYBRID VACUUM	SPIRAFLEX
CONVEYOR BELT	Polyester open mesh with PUCON	Spiraflex
CONVEYOR BELT FABRIC	Rigid polyester	Polyester
MEGALINEAR BELT TYPE AND PITCH	H, T5, T10, HTD5, HTD8M, STD8M	H, T5, T10, HTD5, HTD8M, STD8M
MEGALINEAR CORD TYPES	Kevlar®, No cord	Kevlar®, No cord
MEGALINEAR DUROMETER/ COLOR	92A White	92A White
MEGALINEAR NFT	Yes	Yes
# OF MEGALINEAR BELTS	Two, belt edges	Two, belt edges
MAX BELT WIDTH	1000mm	2000mm
ADVANTAGES •	Driven speeds up to 500M/min. Precision positioning Energy savings Enables compact conveyor designs Open mesh allows vacuum or drainage	Excellent suction propertiesCustomizationLow weight
INDUSTRIES Packaging	Material handling Medical Industry Food Robotics & Automation	Medical Industry Food

COATING SILICONE AND NEOPRENE

Megadyne has developed state of the art processes for applying silicone and neoprene to stable and elastic substrates. Ongoing investments in automation with a strategic focus on process controls and high quality repeatability have been made. Through continuous material feed, increased speeds, line efficiency and operator engagement with screen panel controls, we are able to maintain extremely tight manufacturing tolerances and high quality standards.


Coated belts are commonly used in product handling applications where environmental or special handling features are needed. Additionally, a thin coating on certain substrates allow for the finished product to offer low flex enabling the belt to be used on low profile conveyors where designs such as knife edge pulleys are common.


FDA Silicone allows use of our product in applications such as hygienic goods and medical related parts and components. Silicone is an excellent cover material where the use of glues and adhesives are present in product manufacturing and require easy release and clean up. Silicone also has excellent heat resistance making it an ideal solution for applications in high heat environments.

Neoprene rubber can be formulated to provide good chemical and wear resistance, anti-static features and self-extinguishing (UL94V) non-flammable properties for use in precision conveying applications. Our neoprene rubber covers can be applied to various substrates.

Both Silicone and Neoprene coated products can be further customised with modifications such as holes and slots to meet application needs such as vacuum draw

Material	RTV Silicone	Neoprene
Hardness (Shore A)	40, 70 (25-70 capable)	55
Colour	••••	•
Thickness Range (mm)	1-10	0.5-1
Working Temp Range (°C)	-40/+230	-20/+120
Abrasion Resistance	Good	Very Good
Oil Resistance	Poor	Good
FOOD CONTACT APPROVED	yes*	_
Rubber Timing Belts	yes	yes
Molded PU Timing Belts	yes	yes
Open End TPU Timing Belts	yes	yes
Truly Endless Flex TPU Belts	yes	yes
Rubber Multi-Rib V- Belts	yes	yes
Urethane Multi-Rib V-Belts	yes	yes
Rubber Banded V-Belts	yes	yes
Rubber Flat Belts	yes	yes
Woven & Knitted Polyester	yes	yes
Woven Kevlar®	yes	yes
Engineered Belts	yes	-
Foams	yes	-
*Contact Customer Support for Details Kevlar® is a registered trademark of Du		

Victoria

Phone +61 (03) 9763 6701 au-ptsales@ammega.com

BRASIL

Sorocaba

Phone +55 15 2101 7700 Info.br@megadynegroup.com

CANADA

Edmonton

Phone +1 780 461 4400 Info.ca@megadynegroup.com

Montreal

Phone +1 514 695 1313 Info.ca@megadynegroup.com

Toronto

Phone +1 905 602 4400 Info.ca@megadynegroup.com

CHINA

Beijing

Phone +86 10 8150 7478 info.cn@megadynegroup.com

Foshan

Phone +86 757 8381 5530 info.cn@megadynegroup.com

Ningbo*

Phone +86 574 8650 5008 info.cn@megadynegroup.com

Phone +86 574 8833 4378 sales@challengept.com

Qingdao*

Phone +86 532 8658 0951 info.cn@megadynegroup.com

Shanghai

Phone +86 21 5447 1473 info.cn@megadynegroup.com

Xi'an

Phone +86 29 86358108 info.cn@megadynegroup.com

COLOMBIA

Bogotà

Phone + 57 1 390 4325 Info.co@megadynegroup.com

Cartagena

Phone + 57 5 693 2591 Info.co@megadynegroup.com

Mosquera - Cundinamarca

Phone +57 1 893 9890 info.co@megadynegroup.com

CZECH REPUBLIC

Prague

Phone +420 603 461 892 Info.cz@megadynegroup.com

FRANCE

Paris

Phone +33 1 6079 8200 info.fr@megadynegroup.com

GERMANY

Borchen

Phone +49 5251 8735 0 info.de@megadynegroup.com

HUNGARY

Budapest

Phone +36 23 428 628 info.hu@megadynegroup.com

INDIA

Chennai*

Phone +91 98841 81175 info.in@megadynegroup.com

IRELAND

Dublin

Phone +353 1 456 6311 ireland@challengept.com

ISRAEL

Caesarea

Phone +972 4 637 1485 info.il@megadynegroup.com

ITALY

Turin*

Phone +39 011 926 8052 info@megadynegroup.com

Pescara*

Phone +39 085 9700547 info.it@megadynegroup.com

Venice

Phone +39 041 929 367 info.it@megadynegroup.com

JAPAN

Nagoya

Phone +81 52 433 7400 info.jp@megadynegroup.com

MEXICO

Mexico C.P.

Phone +52 55 5587 3680 info.mx@megadynegroup.com

PERU

Lima

Phone + 51 713 0069 info.pe@megadynegroup.com

POLAND

Bielsko Biala

Phone + 48 32 447 7179 info.pl@megadynegroup.com

Bydgoszcz*

info.pl@megadynegroup.com

SINGAPORE

Singapore

Phone +65 62739767 Info.sg@megadynegroup.com

SOUTH AFRICA

Johannesburg

Phone + 27 (0) 12 661 1652 info.za@megadynegroup.com

Phone + 27 (0) 11 3976115 sasales@challengept.com

Cape Town

Phone +27 (0)21 9820772 info.za@megadynegroup.com

SOUTH KOREA

Gyeonggi-do

Phone +82 314483613-7 Info.kr@megadynegroup.com

SPAIN

Vilanova*

Phone +34 93 811 5450 info.es@megadynegroup.com

SWEDEN

Kristianstad

Phone +46 10 1309600 info.se@megadynegroup.com

THAILAND

Bangkok

Phone +66 2 902260413 info.th@megadynegroup.com

TURKEY

Izmir

Phone +90 232 877 07 00 info.tr@megadynegroup.com

U.K.

Birmingham

Phone +44 1384 215 021 info.uk@megadynegroup.com

Wolverhampton

Phone +44 (0) 1902 866116 uksales@challengept.com

U.S.A

California

Phone +1 323 265 8061 info.us@megadynegroup.com

Florida

Phone +1 813 241 4111 info.us@megadynegroup.com

Georgia*

info.us@megadynegroup.com

Illinois

Phone +1 630 752 0600 info.us@megadynegroup.com

New Jersey Americas HQ

Phone +1 973 227 4904 info.us@megadynegroup.com

North Carolina*

info.us@megadynegroup.com

Oregon

Phone +1 503 231 7224 info.us@megadynegroup.com

Texas

Phone +1 972 438 6992 info.us@megadynegroup.com

* Manufacturing locations

GENERAL CONTACT INFORMATION

MEGADYNE

Via S. Lucia, 114 10075 Mathi (Torino)

Phone +39 011 926 8052 info@megadynegroup.com

ammega.com