

Linear Line

General catalogue English

Interactive catalogs on: www.rollon.com

TO SUPPORT YOU, WE DESIGN AND PRODUCE

An industrialized process with various levels of customization

Rollon's goal is to help our clients become more competitive in their markets through technological solutions, design simplification, productivity, reliability, duration, and low maintenance.

INDUSTRIAL MACHINE

ROBOTICS

PERFORMANCE

VALUES

COLLABORATION

SOLUTIONS APPLICATIONS

High-level technical consulting and cross-competence allow us to identify the needs of our clients and transform them into guidelines for continuous exchange, whileour strong specialization in the different industrial sectors becomes an factor in developing projects and innovative applications.

> Rollon takes on the task of design and development of linear motion solutions, taking care of everything for our customers, so that they can concentrate on their core business. We offer everything from individual components to specifically designed, mechanically integrated systems: the quality of our applications is an expression of our technology and competence.

> > MEDICAL

SPECIAL VEHICLES

DIVERSIFIED LINEAR SOLUTIONS FOR EVERY APPLICATION REQUIREMENT

Linear and telescopic rails

Linear and curved rails with ball and roller bearings, with hardened raceways, high load capacity, self-alignment, and capable of working in dirty environments.

Telescopic Line

Telescopic rails with ball and roller bearings, with hardened raceways, high load capacities, low bending, resistant to shocks and vibrations. For partial, total or extended extraction up to 200% of the length of the guide.

Linear actuators and automation systems

Actuator Line

Linear actuators with different rail configurations and transmissions, available with belt, screw, or rack and pinion drives for different needs in terms of precision and speed. Rails with bearings or ball recycle systems for different load capacities and critical environments.

Actuator System Line

Integrated actuators for industrial automation, used in applications in several industrial sectors: automated industrial machinery, precision assembly lines, packaging lines and high speed production lines. The Actuator Line evolves to satisfy the requests of our most discerning clients.

Content

>	Compact Rail 🛛 🔊	;	
	Compact Nation 1 Product explanation The newly designed Rollon guide with double row ball bearings for higher load capacities.		
		CR-2	
		2 Technical data	
	2	Performance characteristics and notes	CR-5
	Relian	Configurations and behavior of the slider under yawing moment M _z Load capacities	CR-6 CR-8
		3 Product dimensions	
		TG / TMG -rail, Rail length	CR-11
		R-version slider	CR-12
		RD-version slider	CR-14
		TG / TMG -rail with sliders	CR-16
		Offset of fixing holes	CR-17
		4 Accessories	
		Rollers	CR-18
		Wipers, Alignment fixtures, Fixing screws	CR-19
		5 Technical Instructions	
		Linear accuracy	CR-20
		Points of contact between rollers and raceways	CR-22
		Slider composition	CR-23
		V+P/U-system tolerance compensation	CR-24
		A+P/U-system tolerance compensation	CR-26
		Preload	CR-29
		Drive force	CR-30
		Lubrication, Slider lubrication	CR-32
		Corrosion protection, Speed and acceleration, Operating temperatures	CR-33
		6 Installation instructions	
		Fixing holes	CR-34
		Adjusting the sliders	CR-35
		Use of radial ball bearing rollers	CR-36
		Installing the single rail	CR-37
		Parallel installation of two rails	CR-40 CR-42
		Installation of the self-aligning systems	
		Joined Rails	CR-43
		Installation of joined rails	CR-44
		Ordering key	
		Ordering key with explanations	CR-45

Compact Rail

1 Product explanation

Self-aligning linear guides with bearings and C-profile featuring newly designed robust steel slider	CR-48
2 Technical data	
Performance characteristics and notes	CR-51
Configurations and behavior of the slider under yawing moment M,	CR-52
Load capacities	CR-54
3 Product dimensions Rail T, U, K	CR-58
Rail length	CR-50 CR-59
NSW/NSA-version slider	CR-60
NSWL/NSAL-version slider	CR-64
NSD/NSDA-version slider	CR-66
CS-version slider	CR-68
T-rail with NSW/NSD/CS slider	CR-70
U-rail with NSW/NSD/CS slider	CR-71
K-rail with NSA/NSDA/CSK slider	CR-72
Offset of fixing holes	CR-73
·	
4 Accessories Bollers	CR-74
Wipers, Alignment fixture AT (for T- and U-rail),	01174
Alignment fixture AK (for K-rail)	CR-75
Fixing screws	CR-76
Manual clamp elements	CR-77
	011 11
5 Technical instructions	
Linear accuracy	CR-78
Supported sides	CR-79
T+U-system tolerance compensation	CR-80
K+U-system tolerance compensation	CR-82
Preload	CR-85
Drive force	CR-87
Lubrication, NSW-slider lubrication	CR-89
CSW-slider lubrication, Corrosion protection, Speed and acceleration,	00.00
Operating temperatures	CR-90
6 Installation instructions	
Fixing holes	CR-91
Adjusting the sliders, Use of radial ball bearing rollers	CR-92
Installing the single rail	CR-93
Parallel installation of two rails	CR-95
Installation of the T+U- or the K+U-system	CR-97
Joined Rails	CR-98
Installation of joined rails	CR-100
Ordering key	
Ordering key with explanations	CR-101
Calculation formulas	
Static load	CR-103
Slider load	CR-103
Service life	CR-107

X Rail

ROLLON EV TIMES	
0.0.0	5

1 Product explanation X-Rail: linear bearings in stainless steel, zinc-plated steel or hardened steel with Rollon-Nox process.	XR-2
2 Technical data Performance characteristics and remarks Load capacities	XR-4 XR-5
3 Product dimensions TEN/TEP - Rollon-Nox hardened steel guides with shaped raceways UEN/UEP - Rollon-Nox hardened steel guides with flat raceways TES - Zinc-plated steel guides with shaped raceways UES - Zinc-plated steel guides with flat raceways TEX - Stainless steel guides with shaped raceways UEX - Stainless steel guides with flat raceways	XR-6 XR-8 XR-10 XR-13 XR-15 XR-18
4 Accessories	
Rollers	XR-20
Wipers, Fixing screws	XR-24
5 Technical instructions	
Lubrication	XR-25
T+U-System	XR-26
Service life calculation for N/P-series	XR-28
Static load	XR-30
Adjusting the slider	XR-31
Use of radial ball bearing rollers	XR-32
Anticorrosion treatments	XR-33
Ordering key	
Ordering key	XR-34
Accessories	XR-35

e		
Easystide	1 Product explanation Easyslide is a linear ball rail system (with caged ball bearings for the SN series or with recirculating ball bearings for the SNK series) with single slider or multiple sliders.	ES-2
	2 Technical data Performance characteristics and notes	ES-4
2	3 Dimensions and load capacity	
200	SN	ES-5
	SN	ES-9
	SNK	ES-10
	SNK	ES-11
	4 Technical instructions	
	Static load	ES-12
	Service life	ES-14
	Clearance and preload, Coefficient of friction,	
	Linear accuracy, Speed, Temperature	ES-15
	Anticorrosive protection, Lubrication SN, Lubrication SNK	ES-16
	Fixing screws, Installation instructions	ES-17
	SNK Joined Rails	ES-18
	Instructions for use	ES-19
	5 Standard configurations	
	SN Standard configurations	ES-20
	Ordering key	
	Ordering key with explanations	ES-22

Curviline

1 Product explanation Curviline are curvilinear rails with constant and variable radii	CL-3
2 Technical data	
Performance characteristics and notes	CL-5
3 Product dimensions	
Rails with constant/variable radii with tempered raceways	CL-6
Slider, Mounted sliders and rails, Load capacities	CL-7
Rails with constant/variable radii in carbon steel	CL-8
Slider, Mounted sliders and rails, Load capacities	CL-9
Rails with constant/variable radii in stainless steel	CL-10
Slider in stainless steel, Rail-slider package in stainless steel, Load capacities	CL-11
4 Technical instructions	
Slider with joint	CL-12
Load capacities, Anticorrosive protection	CL-13
Lubrication, Setting the preload	CL-14
Ordering key	
Ordering key with explanations	CL-16

Easyslide

O-Rail

1 Product explanation O-Rail - unique assembly possibilities, FXRG series	0R-2
2 General characteristics Configurations	OR-4
3 Dimensions and load capacity FXRG series	OR-5
4 Accessories Rollers for FXRG	0R-7
5 Technical instructions Mounting configurations Lubrication, Joined Rails Installation of joined rails	0R-9 0R-11 0R-12
Ordering key	

Prismatic Rail

1 Product explanation Prismatic Rail: with cylindrical or V-shaped rollers	PR-2
2 Technical data Performance characteristics and Notes	PR-4
3 Product dimensions	
Steel V-shaped rails, Machining: drilled guide rails with straight cut Machining: drilled guide rails with 1 bevel and 1 slanting cut,	PR-5
Machining: drilled guide rails with 2 slanting cuts	PR-6
Tilting roller slides with 4 rollers Ø30 for V-shaped guide rails 28.6x11	PR-7
Tilting roller slides with 4 rollers Ø40 for V-shaped guide rails 35x16	PR-8
Type G roller slides (roller Ø52) and H type (roller Ø62) for V-shaped guide rails 55x25	PR-9
I-type roller slides (roller Ø52) and L-type (roller Ø62) for V-shaped guide rails V 55x25	PR-10
4 Accessories	
V-shaped rollers (Guide Rails 28.6 x 11) anti-oxidized version,	
V-shaped rollers [rails 35 x 16]	PR-11
Spare roller with pin	PR-12
Assembly Pins, Type 0 assembly pins suitable for roller slide Ø30 and Ø40 Type 7 assembly pins suitable for roller slide E-F,	PR-13
Assembly pins type 8 suitable for carriage E-F	PR-14
Type 9 assembly pins suitable for tilting roller slides G-H / I-L	PR-15
V-shaped guide rail assembly inserts	PR-16
5 Technical instructions	
Rollers and V-shaped guide rails 28.6x11 and 35x16, Application diagram	
common to 2-roller slides, Application diagram common to 3-roller slides	PR-17
Ordering key	
Identification codes for roller slides and pins	PR-18
Assembly of standard carriages / K version carriages	PR-19

Speedy Rail I Product explanation Self-supporting and self-aligning 2 Technical data

Self-supporting and self-aligning extruded aluminum linear guides	SR-2
2 Technical data	
Dimensions, Rollers and roller assemblies	SR-3
3 Speedy Rail 35	
"Speedy Rail 35" guide and specification	SR-4
"Speedy Rail 35" assemblies and components	SR-5
Sliding doors "Speedy Rail 35" application example	SR-7
4 Speedy Rail C 48	
"Speedy Rail C 48" guide and specification	SR-8
"Speedy Rail C 48" assemblies and components	SR-9
Rollers and roller boxes for "Speedy Rail C 48" guide	SR-10
Roller boxes for "Speedy Rail C 48" guide	SR-11
5 Speedy Rail 60	
"Speedy Rail Mini" guide and specification	SR-12
"Speedy Rail Mini" roller assemblies and components	SR-13
"Speedy Rail Mini" guide and components	SR-14
Dovetail clamps and fishplates	SR-15
Roller assembly and "V" rollers "Light"	SR-16
Roller assemblies and "V" rollers	SR-17
6 Speedy Rail 90	
"Middle Speedy Rail" guide and specifications	SR-19
"Middle Speedy Rail" assemblies and components	SR-20
"Middle Speedy Rail" guide and components	SR-21
Dovetail clamps and fishplates	SR-22
Plastic compound shell "V" rollers	SR-23
Roller assembly with "V" shaped rollers	SR-24
7 Speedy Rail 120	
"Standard Speedy Rail" guide and specifications	SR-25
"Standard Speedy Rail" assemblies and components	SR-26
"Standard Speedy Rail" guide and specifications	SR-27
Components for speedy rail SR120 guide	SR-28
Standard dovetail clamps	SR-29
Racks components for rigid mounting	SR-30
Standard fixing fishplates	SR-31
Plastic compound shell "V" rollers	SR-32
Roller assembly with "V" rollers	SR-34
Plastic compound shell rollers	SR-35
2 Rollers light full-block assembly Compact roller assembly with plastic compound rollers	SR-36 SR-37
Full-block roller assembly	SR-37
Roller assembly with 4 rollers	SR-30
Narrow/wide base blindo beam roller assembly	SR-40
8 Rollers blindo beam roller assembly	SR-40 SR-41
Light 4 rollers floating assembly for Speedy Rail guides	SR-42
Floating roller assembly with 4 rollers - short/long pivot	SR-43
Rollers assembly, one fixed, one self adjusting	SR-44
Floating roller assembly with 6 rollers - short/long pivot	SR-45
Floating roller assembly with 8 rollers - short/long pivot	SR-47

Assembling diagram for rigid mounted rack Standard racks Standard scrapers	SR-48 SR-49 SR-50
8 Speedy Rail 180 Wide body multi groove speedy rail guide and specifications Roller assemblies and components Wide body multi groove speedy rail guide and specifications Components for wide body multi groove Speedy Rail guide Roller assembly with "V" shaped rollers Roller assembly with 4 rollers 8 Rollers floating assembly - complete pairing Backing plate for floating roller assemblies	SR-51 SR-52 SR-53 SR-54 SR-55 SR-56 SR-57 SR-58
9 Speedy Rail 250 Super wide body multi groove speedy rail guide and specifications Roller assemblies and components Superwide body multi groove speedy rail guide and specifications Components for super wide body speedy rail guide Roller assembly with "V" shaped rollers	SR-59 SR-60 SR-61 SR-62 SR-63
10 Technical detail Mechanical and technological components specifications Treatments on all light alloy components, Rollers, Roller assemblies Rollers adjustments, Torque settings, Scrapers, Drive head Lubrication, Life testing and speed Summary table Speedy Rail guides Loads on a 4 'V' rollers trolley Loads on twin 4 'V' rollers trolleys Loads on a 4 'V' rollers vertical trolley Cilindrical roller loads Load capacities for C Rollers assemblies Load capacities for V Rollers assemblies User suggestions	SR-64 SR-65 SR-66 SR-67 SR-68 SR-69 SR-73 SR-74 SR-75 SR-77 SR-81 SR-81
11 Applications	SR-85
12 Ordering key	SR-90

MiniRoller Rail

1 Product explanation Compact linear guide with rollers, induction hardened and honed raceways	MRR-2
2 Technical data MiniRoller Rail load capacities	MRR-5
3 Product dimensions MiniRoller width, Rail length Slider, Mounted sliders and rails	MRR-6 MRR-7
4 Accessories Rollers	MRR-8
5 Technical instructions Lubrication, Corrosion protection Preload, Setting the preload Speed and acceleration, Operating temperatures	MRR-9 MRR-10 MRR-11
6 Installation instructions Installation of two rails in parallel	MRR-12
Ordering key MiniRoller Rail slider system, Slider, Rail	MRR-13
Calculation formulas Static load Slider load Service life	MRR-14 MRR-15 MRR-18

Mono Rail

1 Product explanation	
Mono Rails are profile rails for the highest degree of precision	MR-2
2 Technical data	
Performance characteristics and notes	MR-5
Mono Rail load capacities	MR-6
Miniature Mono Rail load capacities	MR-7
3 Product dimensions	
MRS – carriage with flange	MR-8
MRSW – carriage without flange	MR-9
MRTW – carriage without flange	MR-10
MRRF – rails mounted from below	MR-11
Miniature Mono Rail standard width	MR-12
Miniature Mono Rail large width	MR-13
1 According	
4 Accessories Safety equipment and covers	MR-14
Metal cover strip, Flush cap	MR-14 MR-16
Clamping elements	MR-10 MR-17
Manual clamp HK	MR-17 MR-18
Pneumatic clamp MK / MKS	MR-10 MR-19
Adapter plate	MR-19 MR-20
Auapici plate	WIT-20
5 Technical instructions	
Mono Rail precision	MR-21
Miniature Mono Rail precision	MR-22
Mono Rail Radial clearance / preload	MR-23
Miniature Mono Rail Preload	MR-24
Anticorrosive protection, Mono Rail lubrication	MR-25
Miniature Mono Rail Iubrication	MR-26
Mono Rail lubrication nipple	MR-28
Mono Rail loading	MR-29
Mono Rail service life	MR-30
Miniature Mono Rail loading	MR-31
Miniature Mono Rail service life	MR-32
Friction / displacement resistance	MR-34
Mono Rail installation instructions	MR-35
Miniature Mono Rail installation instructions	MR-37
Installation examples	MR-42
Ordering key	
Ordering key with explanations	MR-43
	WIN-43
Guides suitable for all applications	

Data sheet

Technical features overview

	Reference		Section		Hardened	Rollon NOX hardening	Self-	Slider		Anticorrosion	
Proc	luct Family	Product		rail	raceways	process *3	alignment	Balls	Rollers		
Compact	and the second second	TLC KLC ULC			\checkmark		+++		6	****	
Rail	Contraction of the local division of the loc	TG/TMG			\checkmark	\checkmark	+++			****	
X-Rail	0.0.0	TEX TES UEX UES	Ĥ				+++		0	Available in stainless steel	
		TEN/TEP UEN/UEP				V	+++		0	••	
Easyslide	A STREET	SN			\checkmark		++	000000		• • **** 	
		SNK			\checkmark		+	fanner fan		*** *	
Curviline	The	CKR CVR CKRH CVRH CKRX CVRX					+		0	Available in stainless steel	
0-Rail	30	FXRG		L		\checkmark	+++			****	
Prismatic Rail		Р		Æ	\checkmark		+++		0		
		SR35			\checkmark		++			▲ ♦	
Speedy Rail	0.0	SRC48			\checkmark		+			▲ ♦	
		SR					+++		M	▲ ♦	
Mini Roller	Contraction of the second	MRR			\checkmark		+		0	****	
Mono Rail	a.	MR		\square	V		-	((
mono nan		MMR			\checkmark		-	fanner fanner		****	

 $^{\star 1}$ The maximum value is defined by the application.

 $^{\star_2}\,A$ longer stroke is available for jointed versions.

*3 High dept nitride hardening treatment and oxidation.

* Value reffered to a single bearing, it's possibile to configure the numbers of bearings to obtain the desired load capacity.

****For more information, please contact our technical department.

Size	Max. load capacity per slider [N]		Dynamic coefficient [N]	Max. moment t capacity [Nm]		nt	Max. rail length	Max. speed*	Max. acceleration	Operating temperature	
	\mathbf{C}_0 rad	C ₀ ax	C 100	M _x	M _y	M _z	[mm]	[m/s]	[m/s²]	temperature	
18-28-35 -43-63	15000	10000	36600	350	689	1830	4080*2	9	20	-20°C/+120°C	C R
18-28-43	10800	7140	15200	110.7	224.3	754	4000*2	7	15	-20°C/+120°C	
20-26-30-40-45	1740	935	***				4000	1.5	2	-20°C/+100°C TEX-UEX -20°C/+120°C TES-UES	X R
26-30-40	3240	1150	3670				4000	1.5	2	-20°C/+120°C	
22-28-35 -43-63	122000	85400	122000	1120.7	8682	12403	1970	0.8		-20°C/+170°C	E S
43	10858	7600	10858	105	182	261	2000*2	1.5		-20°C/+70°C	
01-05	2475	1459	****				3240	1.5	2	-20°C/+80°C	C L
12	4000*4	1190*4	7600*4				4000	9	20	-20°C /+120°C	0 R
28-35-55	15000	15000	-	-	-	-	4100*2	7	20	-10°C/+80°C	P R
35	400	400	-	-	-	-	6500* ²	8	8	- 30° C / + 80° C	S R
48	540	400	-	-	-	-	7500* ²	8	8	- 30° C / + 80° C	
60-90-120- 180-250	14482	14482		-	-	-	7500* ²	15	10	- 30° C / + 80° C	
11	820	375	1530	2.3	5.9	10.3	1950	3	5	-20°C /+120°C	M R R
15-20-25-30-35- 45-55	249	000	155000***	5800	6000	6000	4000*2	3.5	20	-10°C/+60°C	M R
7-9-12-15	83	85	5065	171.7	45.7	45.7	1000*2	3	250	-20°C/+80°C	

New Compact Rail

It simplifies the project, improves the perfomance and reduces the application cost: **8 main advantages.**

Self-aligning system

0.00

ROLLON

- Select the most suitable structure for your project
- Avoid machining the mounting surface
- Reduce the assembly time

0

Compact Rail

Up to 3.9 mm with T+U or K+U rails Up to 3.5 mm with TG rails

S

Configurations of

ROLLON

Single row ball bearings

Rails with different geometries

Up to ±2° with K+U rails

Up to ±2° with K+U rails

Up to 3.9 mm with T+U or K+U rails

Up to ±1.3° with RP+RA or RU+RA sliders Up to ±1.3° with R

Up to ±1.3° with RP+RA or RU+RA sliders

Up to 3.5 mm with RP+RV or RU+RV sliders

Optimal reliability in dirty environments

Lateral sealing for a greater protection against contaminants

New self-centering wiper for an optimal cleansing of the raceways

Resistant to corrosion

Different surface treatments make Compact Rail reliable even in the harsher environments

- **Indoor applications:** zinc-plating ISO 2081. Also available with electro-painted black finishing
- **Corrosive environments (humidity):** ZincNickel-plating ISO 19598.
- Corrosive environments (acidic or basic): nichel-plating

Long lifetime

Induction hardened raceways with 1.2 mm effective depth and hardness between 58 and 62 HRC

5

High dynamics

Speed up to 9 m/s Acceleration up to 20 m/s 2

New Compact Rail slider

Improved performance and a new look designed to fit every project perfectly.

Low maintenance

Integrated lubrication system with slow release felt and front-access for greasing

Uniquely quiet

Ground raceways for a smooth and silent movement

Strength and

Strength and sturdiness

Thanks to steel slider body

ROLLON

ROLLON

NOTH

Ĩ

Compact Rail

Product explanation $\parallel \checkmark$

The newly designed Rollon guide with double row ball bearings for higher load capacities.

Featuring double row ball bearings, new rigid rails with convex raceways and new robust steel sliders with longitudinal protection and floating wipers, Compact Rail Plus has been designed for the most demanding applications in terms of load capacities, dynamics and work environment. All while maintaining the self-aligning capabilities that make this product family unique.

The rails are made of cold drawn carbon steel, zinc-plated for sizes 28 and 43 and hardened with Rollon-Nox patented process for size 18 (nitriding and black oxidation). Other treatments for higher corrosion resistance are available as an option. For sizes 28 and 43, raceways are induction hardened and ground. The sliders are available in four versions: guiding slider; floating slider; extra-floating slider and rotating slider. Combining two rails with different sliders makes it possible to create self-aligning systems that can compensate misalignment errors on two planes: radial up to $\pm 1.3^{\circ}$ and axial up to 3.5 mm.

The most important characteristics:

- High radial and axial load capacity
- High rigidity
- Robust steel slider with longitudinal protection and floating wipers
- Self-aligning in two planes
- Induction hardened and ground raceways (size 28 and 43)
- Nitriding and black oxidation and polished raceways (size 18)
- Protected for dirty environments
- High operating speeds
- Wide temperature range
- Two ways to adjust the slider in the guide rail
- Different anticorrosion treatments available for rails and slider bodies

Preferred areas of application:

- Cutting machines
- Medical technology
- Packaging machines
- Photographic lighting equipment
- Construction and machine technology (doors, protective covers)
- Robots and manipulators
- Automation
- Handling

Rail with convex raceways

Rails are made of cold-drawn carbon steel and feature a c-shaped crosssection with interior convex raceways. The rail shape allows protection from accidental bumps and other damages that might occur during usage.

For sizes 28 and 43, the raceways are induction hardened and fine ground and the rail is zinc-plated. Other treatments are available for higher corrosion resistance, these include: Rollon Aloy, Rollon E-coating and nickel plating. For size 18, the rail is treated with Rollon-Nox nitriding and oxidation process that provides a fine black color to the entire rail. Other anticorrosion treatments are not available.

С

R

R-slider

Robust zinc plated steel slider with sealed double row ball bearing rollers, self-centering heads with wipers, longitudinal seals to protect the internal components and a top sealing strip to prevent accidental tampering of the fixed rollers. The slider body is accurately finished with matte longitudinal edge chamfer and a shining ground flat surface. It is available for all sizes, configurable with up to six rollers depending on the load requirement. Four versions are available to allow different floating capacities and create self-aligning systems: RV guiding slider, RP floating slider, RU extra-floating slider and RA rotating slider.

RD-slider

Constructed as the R-slider with mounting holes parallel to the direction of preferred loading. It is available for sizes 28 and 43, with three or five rollers, depending on load case and load direction set with the corresponding configuration.

Self-alignment system: V+P/U

The combination of two rails, one featuring a RV guiding slider and one featuring a RP floating slider or RU extra-floating slider, creates a system that allows to compensate large axial misalignment errors.

Self-alignment system: A+P/U

The combination of two rails, one featuring a RA rotating slider and one featuring a RP floating slider or RU extra-floating slider, creates a system that allows to compensate misalignment errors on two planes: axial and radial.

Fig. 4

Fig. 5

Rollers

The precision rollers have double row ball bearings to provide high load capacities in both radial and axial direction. All rollers are equipped with splash-proof plastic seal (2RS). They are available in three versions: guiding rollers with two contact points on the raceway; floating rollers with one contact point and two lateral shoulders to limit the axial floating; extra-floating rollers with completely flat outer ring for total excursion. All rollers can also be ordered individually, and for size 28 and 43 it is available the stainless steel version.

The slider heads are equipped with special slow release felt pads and are free to rotate with respect to the slider body, so that the felts are always in contact with the raceways to ensure a perfect lubrication. The felts can be grased through a dedicated oil refilling access on the front of the head, simply by means of a syringe oiler.

Alignment fixture

The alignment fixture is used during installation of joined rails in order to precisely align the rails with each other.

Fig. 8

Fig. 9

Technical data

Performance characteristics:

- Available rail sizes: 18, 28, 43
- Max. operating speed: 7 m/s (276 in/s) (depending on application)
- Max. acceleration: 15m/s² (590.55 in/s²) (depending on application)
- Max. radial load capacity: 10,800 N (per slider)
- Temperature range: -20 °C to +120 °C (-4 °F to +248 °F) briefly up to max. +150 °C (+302 °F)
- Available rail lengths from 160 mm to 3,600 mm (6.3 in to 142 in) in 80-mm increments (3.15 in), longer single rails up to max.
 4,080 mm (160.6 in) on request for sizes 28 and 43.
- Rollers material: steel 100Cr6 (also available stainless steel AISI 440)
- Roller pins lubricated for life
- Roller seal/shield: 2RS (splash-proof)
- In sizes 28 and 43 rails and slider bodies are standard zinc-plated according to ISO 2081, raceways are induction hardened and ground.
- In size 18 rails are hardened with Rollon-Nox treatment of deep nitriding and black oxidation and slider bodies are standard zinc-plated according to ISO 2081.
- Rail material of rails size 28-43: cold-drawn carbon steel CF53
- Rail material of rails size 18: cold-drawn carbon steel 20MnCr5

Notes:

- The sliders are equipped with rollers that are in alternating contact with both sides of the raceway. Markings on the body around the roller pins indicate correct arrangement of the rollers to the external load
- With a simple adjustment of the eccentric rollers, the desired clearance or preload on the rail and slider can be set (see pg. CR-35)
- Rails in joined design are available for longer transverse distances (see pg. CR-43).
- Screws of property class 10.9 must be used
- When mounting the rails, it is crucial to ensure that the mounting holes in the structure are properly chamfered (see pg. CR-34 tab. 59)
- The general illustrations show R-sliders as an example
- For rollers size 28 and 43 it is available the stainless steel version (see pg. CR-18).

Configurations and behavior of the slider under yawing moment M₂

Individual slider under M, moment load

When an overhanging load in an application with a single slider per rail causes an M_z moment in one direction, a 4 to 6 roller Compact Rail slider is available. These sliders are available in both configuration A and B in regards to the roller arrangement to counter the acting M_z moment load. The moment capacity of these sliders in the Mz-direction varies significantly through spacing L_1 and L_2 in accordance with the direction of rotation of M_2 .

Especially in the use of two parallel rails, it is extremely important to pay attention to the correct combination of the slider configuration A and B, in order to use the maximum load capacities of the slider.

The diagrams below illustrate this concept of the A and B configuration for sliders with 4 and 6 rollers. The maximum allowable M_z -moment is identical in both directions for all 3 and 5 roller sliders.

Two sliders under M, moment load

When an overhanging load acts on an application with two sliders per rail and causes an M_z -moment in one direction, different support reactions occur on the two sliders. For this reason, an optimal arrangement of slider configurations must be achieved to reach the maximum load capacities. In practice, when using R-sliders with 3 or 5 rollers, the two sliders must be installed rotated by 180° so that the slider is always loaded on the side with the highest number of rollers.

For an even number of rollers this has no effect. The RD-sliders with installation option from above or below cannot be installed due to the position of the rollers in reference to the installation side, therefore they are available in the configurations A and B (see fig. 15).

Slider configurations for various load cases

Arrangement DS

This is the recommended arrangement for use of two sliders under $\rm M_z$ moment when using one rail. Also see previous page: Two sliders under $\rm M_z$ moment load.

Arrangement DD

When using a pair of guide rails with two sliders each under M_z moment load, the second system should be designed in arrangement DD. This results in the following combination: one guide rail with two sliders in arrangement DS and the other guide rail with 2 sliders in arrangement DD. This allows even load and moment distribution between the two parallel rails.

Arrangement DA

Standard arrangement if no other information is given. This arrangement is recommended if the load point is located within the two outside points of the sliders.

Load capacities

The load capacities in the following table apply for one slider. The functional characteristic is related to the nominal floating capacity, for more information see pg. CR-22, CR-23.

Туре	Number of	Load capacities and moments								
	rollers	С	Co _{rad}	Co _{ax}	M _x	M _v	M _z [Nm]	[kg]	
		[N]	[N]	[N]	[Nm̂]	[Nḿ]	M _{zd}	M _{zs}		
RVG18-3	3	3300	1600	690	3	8.3	14.4	14.4	0.055	
RVG18-4A	4	3300	1600	920	6	13.8	16	48	0.073	
RVG18-4B	4	3300	1600	920	6	13.8	48	16	0.073	
RVG18-5	5	4455	2160	1150	6	18.4	48	48	0.087	
RVG18-6A	6	4455	2160	1380	9	23	48	80	0.105	
RVG18-6B	6	4455	2160	1380	9	23	80	48	0.105	
RAG18-3	3	3300	1600	460	0	8.3	14.4	14.4	0.055	
RAG18-4A	4	3300	1600	460	0	13.8	16	48	0.073	
RAG18-4B	4	3300	1600	460	0	13.8	48	16	0.073	
RAG18-5	5	4455	2160	690	0	18.4	48	48	0.087	
RAG18-6A	6	4455	2160	690	0	23	48	80	0.105	
RAG18-6B	6	4455	2160	690	0	23	80	48	0.105	
RPG18-3	3	3300	1600	0	0	0	14.4	14.4	0.055	
RPG18-4A	4	3300	1600	0	0	0	16	48	0.073	
RPG18-4B	4	3300	1600	0	0	0	48	16	0.073	
RPG18-5	5	4455	2160	0	0	0	48	48	0.087	
RPG18-6A	6	4455	2160	0	0	0	48	80	0.105	
RPG18-6B	6	4455	2160	0	0	0	80	48	0.105	
RUG18-3	3	2300	1120	0	0	0	10.1	10.1	0.052	
RUG18-4A	4	2300	1120	0	0	0	11.2	33.6	0.070	
RUG18-4B	4	2330	1120	0	0	0	33.6	11.2	0.070	
RUG18-5	5	3105	1512	0	0	0	33.6	33.6	0.084	
RUG18-6A	6	3105	1512	0	0	0	33.6	56	0.1	
RUG18-6B	6	3105	1512	0	0	0	56	33.6	0.1	

Туре	Number	Load capacities and moments									
	of	С	Co _{rad}	Co _{ax}	M _×	M _y	M _z [Weight [kg]			
	rollers	[N]	[N]	[N]	[Nm̂]	[Nḿ]	M _{zd}	M _{zs}			
RV28G-3	3	6000	3200	1380	9.2	25.3	44	44	0.24		
RV28G-4A	4	6000	3200	1840	18.4	34.5	40	120	0.29		
RV28G-4B	4	6000	3200	1840	18.4	34.5	120	40	0.29		
RV28G-5	5	8100	4320	2300	18.4	46	120	120	0.36		
RV28G-6A	6	8100	4320	2760	27.6	57.5	120	200	0.4		
RV28G-6B	6	8100	4320	2760	27.6	57.5	200	120	0.4		
RA28G-3	3	6000	3200	920	0	25.3	44	44	0.24		
RA28G-4A	4	6000	3200	920	0	34.5	40	120	0.29		
RA28G-4B	4	6000	3200	920	0	34.5	120	40	0.29		
RA28G-5	5	8100	4320	1380	0	46	120	120	0.36		
RA28G-6A	6	8100	4320	1380	0	57.5	120	200	0.4		
RA28G-6B	6	8100	4320	1380	0	57.5	200	120	0.4		
RP28G-3	3	6000	3200	0	0	0	44	44	0.24		
RP28G-4A	4	6000	3200	0	0	0	40	120	0.29		
RP28G-4B	4	6000	3200	0	0	0	120	40	0.29		
RP28G-5	5	8100	4320	0	0	0	120	120	0.36		
RP28G-6A	6	8100	4320	0	0	0	120	200	0.4		
RP28G-6B	6	8100	4320	0	0	0	200	120	0.4		
RU28G-3	3	4200	2240	0	0	0	30.8	30.8	0.24		
RU28G-4A	4	4200	2240	0	0	0	28	84	0.27		
RU28G-4B	4	4200	2240	0	0	0	84	28	0.27		
RU28G-5	5	5670	3024	0	0	0	84	84	0.33		
RU28G-6A	6	5670	3024	0	0	0	84	140	0.39		
RU28G-6B	6	5670	3024	0	0	0	140	84	0.39		
RDV28G-3A	3	6000	3200	1380	9.2	25.3	44	44	0.28		
RDV28G-3B	3	6000	3200	1380	9.2	25.3	44	44	0.28		
RDV28G-5A	5	8100	4320	2300	18.4	46	120	120	0.41		
RDV28G-5B	5	8100	4320	2300	18.4	46	120	120	0.41		
RDA28G-3A	3	6000	3200	920	0	25.3	44	44	0.39		
RDA28G-3B	3	6000	3200	920	0	25.3	44	44	0.39		
RDA28G-5A	5	8100	4320	1380	0	46	120	120	0.41		
RDA28G-5B	5	8100	4320	1380	0	46	120	120	0.41		
RDP28G-3A	3	6000	3200	0	0	0	44	44	0.39		
RDP28G-3B	3	6000	3200	0	0	0	44	44	0.39		
RDP28G-5A	5	8100	4320	0	0	0	120	120	0.41		
RDP28G-5B	5	8100	4320	0	0	0	120	120	0.41		
RDU28G-3A	3	4200	2240	0	0	0	30.8	30.8	0.25		
RDU28G-3B	3	4200	2240	0	0	0	30.8	30.8	0.25		
RDU28G-5A	5	5670	3024	0	0	0	84	84	0.38		
RDU28G-5B	5	5670	3024	0	0	0	84	84	0.38		

Туре	Number	Load capacities and moments									
	of rollers	С	Co _{rad}	Co _{ax}	M _x	M _y	M _z [Nm]	Weight [kg]		
	Tollers	[N]	[N]	[N]	[Nm]	[Nm]	M _{zd}	M _{zs}			
RV43G-3	3	15200	8000	3570	36.9	97.6	164	164	0.77		
RV43G-4A	4	15200	8000	4760	73.8	135.7	152	456	0.99		
RV43G-4B	4	15200	8000	4760	73.8	135.7	456	152	0.99		
RV43G-5	5	20520	10800	5950	73.8	195.2	452.4	452.4	1.19		
RV43G-6A	6	20520	10800	7140	110.7	224.3	452.4	754	1.42		
RV43G-6B	6	20520	10800	7140	110.7	224.3	754	452.4	1.42		
RA43G-3	3	15200	8000	2380	0	97.6	164	164	0.77		
RA43G-4A	4	15200	8000	2380	0	135.7	152	456	0.99		
RA43G-4B	4	15200	8000	2380	0	135.7	456	152	0.99		
RA43G-5	5	20520	10800	3570	0	195.2	452.4	452.4	1.19		
RA43G-6A	6	20520	10800	3570	0	224.3	452.4	754	1.42		
RA43G-6B	6	20520	10800	3570	0	224.3	754	452.4	1.42		
RP43G-3	3	15200	8000	0	0	0	164	164	0.77		
RP43G-4A	4	15200	8000	0	0	0	152	456	0.99		
RP43G-4B	4	15200	8000	0	0	0	456	152	0.99		
RP43G-5	5	20520	10800	0	0	0	452.4	452.4	1.19		
RP43G-6A	6	20520	10800	0	0	0	452.4	754	1.42		
RP43G-6B	6	20520	10800	0	0	0	754	452.4	1.42		
RU43G-3	3	11400	5600	0	0	0	114.8	114.8	0.75		
RU43G-4A	4	11400	5600	0	0	0	106.4	319.2	0.96		
RU43G-4B	4	11400	5600	0	0	0	319.2	106.4	0.96		
RU43G-5	5	15390	7560	0	0	0	316.7	316.7	1.16		
RU43G-6A	6	15390	7560	0	0	0	316.7	527.8	1.38		
RU43G-6B	6	15390	7560	0	0	0	527.8	316.7	1.38		
RDV43G-3A	3	15200	8000	3570	36.9	97.6	164	164	0.85		
RDV43G-3B	3	15200	8000	3570	36.9	97.6	164	164	0.85		
RDV43G-5A	5	20520	10800	5950	74.8	95.2	452.4	452.4	1.3		
RDV43G-5B	5	20520	10800	5950	74.8	95.2	452.4	452.4	1.3		
RDA43G-3A	3	15200	8000	2380	0	97.6	164	164	0.85		
RDA43G-3B	3	15200	8000	2380	0	97.6	164	164	0.85		
RDA43G-5A	5	20520	10800	3570	0	95.2	452.4	452.4	1.3		
RDA43G-5B	5	20520	10800	3570	0	95.2	452.4	452.4	1.3		
RDP43G-3A	3	15200	8000	0	0	0	164	164	0.85		
RDP43G-3B	3	15200	8000	0	0	0	164	164	0.85		
RDP43G-5A	5	20520	10800	0	0	0	452.4	452.4	1.3		
RDP43G-5B	5	20520	10800	0	0	0	452.4	452.4	1.3		
RDU43G-3A	3	11400	5600	0	0	0	114.8	114.8	0.83		
RDU43G-3B	3	11400	5600	0	0	0	114.8	114.8	0.83		
RDU43G-5A	5	15390	7560	0	0	0	316.7	316.7	1.27		
RDU43G-5B	5	15390	7560	0	0	0	316.7	316.7	1.27		

Product dimensions

TG / TMG -rail

Q' Fixing holes for Torx® screws with low head (custom design) included in scope of supply V' Fixing holes for countersunk head screws according to DIN 7991

Туре	Size	A [mm]	B [mm]	M [mm]	E ¹ [mm]	T [mm]	C [mm]	D [mm]	Weight [Kg/m]	t [mm]	Q¹ [mm]	V ¹ [mm]
TMGC TMGV	18	18	9.5	9	1	2.9	9	7.1	0.68	1.9	M4	M4
TGC	28	28	11.3	14	1	3	11	8.2	1.25	2	M5	M5
TGV	43	43	18.5	21.5	1	5	18	13.7	2.9	3.2	M8	M8

Tab. 4

Rail length

Туре Size Min length Max length Available standard lengths [mm] [mm] L [mm] TMGC 160 - 240 - 320 - 400 - 480 - 560 - 640 - 720 - 800 - 880 - 960 - 1040 240 18 2960 TMGV - 1120 - 1200 - 1280 - 1360 - 1440 - 1520 - 1600 - 1680 - 1760 - 1840 - 1920 - 2000 - 2080 - 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640 28 160 3200 TGC TGV - 2720 - 2800 - 2880 - 2960 - 3040 - 3120 - 3200 - 3360 - 3440 - 3520 - 3600 43 160 3200

Longer single rails up to max. 4080 mm on request for sizes 28 and 43 Longer rail systems see pg. CR-43 Joined rails

R-version slider

R-series

Туре	Size	No. of rollers	A [mm]	B [mm]	C [mm]	G [mm]	F [mm]	X [mm]	Y [mm]	Yn [mm]	Z [mm]	No. of holes
DV/O		3	70	78				20	25	9	52	4
RVG RAG	10	4	92	100	10			40	26			2
RPG	18	5	112	120	16	4.8	M5	20	26	-	-	4
RUG		6	132	140				40	26			3
		3	97	108				35	31	9.5	78	4
	00	4	117	128	04.0	0.7	NAC	50	33.5			2
	28	5	142	153	24.9	9.7	M5	25	33.5	-	-	4
RVG RAG		6	167	178				50	33.5			3
RPG		3	139	150				55	42	12.5	114	4
RUG	10	4	174	185	20 F	145	МО	80	47			2
	43	5	210	221	39.5	14.5	M8	40	45	-	-	4
		6	249	260				80	44.5			3

For information about the roller sliders configuration, see pg. CR-22 and CR-23. For information about the roller type, see pg. CR-18, tab. 10.

Tab. 6

C R

RD-version slider

RD-series

Туре	Size	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	T [mm]	M [mm]	S	G [mm]	F	X [mm]	Y [mm]	No. of holes
RDVG	28	3	97	108	24.9	30.45	15	4.7	M5	9.7	M6	36	30.5	2
RDAG RDPG	20	5	142	153		30.43	10	ч.1	INIO	5.1	WIO	27	30.5	4
RDPG	43	3	139	150	39.5	.5 45.25	15	7	MG	14.5	M8	56	41.5	2
	43	5	210	221	39.0		15	1	M6			42	42	4
For information about	ut the roller slide	ers configuration,	see pg. CR-	22 and CR-2	23.									Tab. 7

For information about the roller sliders configuration, see pg. CR-22 and CR-23. For information about the roller type, see pg. CR-18, tab. 10.

TG / TMG -rail with sliders

Configuration	Size		A [mm]		B [mm]		C [mm]		D [mm]	
TMG / RG	18	18	+0.2 -0.10	16.5	±0.15	16	0 -0.2	17	+0.2 -0.4	
TG / RG	28	28	+0.2 -0.10	24	±0.15	24.9	0 -0.2	26.45	+0.2 -0.4	
Tu / nu	43	43	+0.3 -0.10	37	±0.15	39.5	0 -0.2	41.25	+0.2 -0.4	
TG / RDG	28	28	+0.2 -0.10	24	±0.15	24.9	0 -0.2	32	+0.2 -0.4	
Tu / KDu	43	43	+0.3 -0.10	37	±0.15	39.5	0 -0.2	47	+0.2 -0.4	
									Tab. 8	

Offset of fixing holes

Principle representation of offset

Configuration	Size	δ nominal [mm]	δ maximum [mm]	δ minimum [mm]
TMG / RG	18			
TG / RG	28			
Tu / nu	43	0	-0.25	+0.25
TG / RDG	28			
Tu / hDu	43			
				Tab. 9

C R

Accessories

Rollers

Note: the rollers are lubricated for life.

Ту	rpe	e [mm]	D [mm]	C [mm]	M [mm]	G [mm]	A [mm]	B [mm]	P [mm]	F [mm]	L [mm]	H (mm)	R [mm]	Q [mm]	S	N	C [N]	Co _{rad} [N]	Co _{ax} [N]	Weight [kg]
Steel	Inox	[]	[]	[]	[]		[]		[]	[]		[]	[]	[]			1.1	1.4	1.11	[9]
RNVG18	-		13.2							-	-	-					1650	800	230	
RNPG18	-	-	13.2							11.96	2.5	3.35					1650	800	0	
RNUG18	-		11.95	7	4.6		6.0	M4	5.4	11.95	6	1.6					1150	560	0	0.01
RAVG18	-		13.2	7	4.0	1.1	6.8	IVI4	5.4	-	-	-	-	-	-	3	1650	800	230	0.01
RAPG18	-	0.4	13.2							11.96	2.5	3.35					1650	800	0	
RAUG18	-		11.95							11.95	6	1.6					1150	560	0	
RGNV28R	RGNVX28R		20.75							-	-	-					3000	1600	460	
RGNP28R	RGNPX28R	-	20.75					3 M5		18.81	4	4.1	1.5				3000	1600	0	
RGNU28R	RGNUX28R		18.81	9	61	1.6	10.8		8	18.81	8	2.1		8	10		2300	1120	0	0.02
RGAV28R	RGAVX28R		20.75	9	6.1	1.0			o	-	-	-		h7		4	3000	1600	460	0.02
RGAP28R	RGAPX28R	0.6	20.75							18.81	4	4.1					3000	1600	0	
RGAU28R	RGAUX28R		18.81							18.81	8	2.1					2300	1120	0	
RGNV43R	RGNVX43R		31.4							-	-	-					7600	4000	1190	
RGNP43R	RGNPX43R	-	31.2							28.59	5.3	6.15					7600	4000	0	
RGNU43R	RGNUX43R		28.59	14	0 0	10	15	M8	12.5	28.59	13	2.3	2.5	11	14		5700	2800	0	0.05
RGAV43R	RGAVX43R		31.4	14	8.8	1.8	15	IVIO	12.3	-	-	-	2.0	h7	14	6	7600	4000	1190	0.05
RGAP43R	RGAPX43R	0.8	31.2							28.59	5.3	6.15					7600	4000	0	
	RGAUX43R		28.59							28.59	13	2.3					5700	2800	0	Tab. 10

Rollers size 18 are without protruding pin.

Tab. 10

C R

Wipers

Pair of wipers WR for R- / RD- slider

Rail size	Pair of wipers
18	ZK-WR18G
28	ZK-WR28G
43	ZK-WR43G
	Tab. 11

fixture

ATG28

ATG43

Tab. 12

Alignment fixtures

Fig. 30

Fixing screws

When a rail with counterbored holes is delivered, the Torx® screws are provided in the right quantity.

Rail size	d	D [mm]	L [mm]	K [mm]	S	Tightening torque [Nm]
18	M4 x 0.7	8	8	2	T20	3
28	M5 x 0.8	10	10	2	T25	9
43	M8 x 1.25	16	16	3	T40	22
						Tab. 13

Rail size	Screw type	Usable thread length [mm]
18	M4 x 8	7.2
28	M5 x 10	9
43	M8 x 16	14.6
		Tab. 14

CR-19

Linear accuracy

Linear accuracy is defined as the maximum deviation of the slider in the rail based on the side and support surface during straight line movement.

The linear accuracy, depicted in the graphs below, applies to rails that are carefully installed with all the provided screws on a level and rigid foundation.

Deviation of accuracy with two 3 roller sliders in one rail

Points of contact between rollers and raceways

Guiding rollers (Version V)

The guiding rollers have two contact points with the raceways. This creates a well constrained movement of rollers on the raceway, in both radial and axial direction.

Floating rollers (Version P)

The floating rollers engage only the peak of the raceway. They are constrained radially but allowed to float in the axial direction between the two shoulders. The rollers can also rotate a little.

Extra-floating rollers (Version U)

The extra-floating rollers engage only the peak of the raceway. They are constrained radially but allowed to float in the axial direction without limitation. The completely flat surface of the rollers allows an axial travel wider than the floating rollers, and they can also rotate a little.

(Note: being free from lateral shoulders, extra-floating rollers could run out of the rail or against the bottom rail when exceeding the nominal floating capacity)

Sliders composition

Guiding sliders (RV -slider)

Guiding sliders are built only with guiding rollers. For this reason, they are completely constrained and can support loads and moments in all directions, especially the radial ones.

С

R

Floating sliders (RP -slider)

Floating sliders are built only with floating rollers. They are able to slightly travel axially and to rotate a bit without affecting the preload or the smooth running quality.

Extra-floating sliders (RU -slider)

Extra-floating sliders are built only with extra-floating rollers. They are able to fully travel axially and to rotate a bit without affecting the preload or the smooth running quality. (Note: being free from lateral shoulders, extrafloating sliders could run out of the rail or against the bottom rail when exceeding the nominal floating capacity).

Rotating sliders (RA -slider)

Rotating sliders are built mixing guiding and floating rollers. They are able to carry full radial load and retain the ability to guide the payload as it travels, while also rotating a bit without affecting the preload or the smooth running quality. Rotating sliders are used to absorb angular errors in the mounting surfaces.

Fig. 39

V+P/U-system tolerance compensation

Axial deviations in parallelism

This problem occurs fundamentally by insufficient precision in the axial parallelism of the mounting surfaces, which results in an excessive load on the slider and thus causes drastically reduced service life.

The combination of two rails, one featuring a RV-slider and one featuring a RP-slider or RU-slider, creates a system that allows to compensate large axial misalignment errors. The limit is set by the axial misalignment permitted by the RP- or RU-slider.

Maximum offset

RP-sliders feature floating rollers that are able to slightly travel axially between the two shoulders, while RU-sliders feature extra-floating rollers that are able to fully travel axially without constraints. The maximum axial offset that can be compensated is made up of the combined values S₁ and S₂ listed in table 16. Considered from a nominal value B_{nom} as the starting point, S₁ indicates the maximum offset into the rail, while S₂ represents the maximum offset towards the outside of the rail.

Slider type	S ₁ [mm]	S₂ [mm]	B _{min} [mm]	B _{nom} [mm]	B _{max} [mm]
RPG18	0.4	0.4	16.1	16.5	16.9
RP28G RDP28G	0.4	0.4	23.6	24	24.4
RP43G RDP43G	1	1	36	37	38
RUG18	0.4	1	16.1	16.5	17.5
RU28G RDU28G	0.4	2	23.6	24	26
RU43G RDU43G	1	2.5	36	37	39.5

The application example in the adjacent drawing (see fig. 44) shows that the V+P/U-system implements a problem-free function of the slider even with an angled offset in the mounting surfaces.

If the length of the guide rails is known, the maximum allowable angle deviation of the screwed surfaces can be determined using this formula (the floating slider moves here from the innermost position S_1 to outermost position S_2):

$$\alpha = \arctan \frac{S^{\star}}{L} \qquad \qquad S^{\star} = \text{Sum of } S_{1} \text{ and } S_{2} \\ L = \text{Length of rail}$$

The following table (tab. 17) contains guidelines for this maximum angle deviation α , achievable with the longest guide rail from one piece.

Fig. 43

Size **Rail length Offset S** Angle α [mm] [mm] [°] RPG18 2960 0.8 0.015 RP28G 3200 0.8 0.014 RP43G 3600 2 0.031 RUG18 2000 1.4 0.040 RU28G 3200 2.4 0.043 RU43G 3600 3.5 0.055 Tab. 17 <image><image>

The V+P/U-system can be designed in different arrangements (see fig. 45). A TG-rail with RV-slider accepts the vertical components of load A TG-rail with RP-slider or RU-slider slider attached underneath the component to be guided prevents the vertical panel from swinging and is used as moment support. In addition, a vertical offset in the structure, as well as possible existing unevenness of the support surface, is compensated.

A+P/U-system tolerance compensation

Deviations in parallelism in two planes

The A+P/U-system, like the V+P/U, can compensate for axial deviations in parallelism. The RP- or RU-slider allows to correct the longitudinal parallelism error and, additionally, the RA-slider can rotate in the rail, to compensate for other deviations in parallelism, e.g. height offset.

RA-sliders are built mixing guiding and floating rollers. They carry the full radial load and retain the ability to guide the payload as it travels, while being able to rotate in the rail without affecting the preload or the smooth running quality. The combination of two rails, one featuring a RA-slider and one featuring a RP- or RU-slider, can be used to absorb both axial and angular errors in the mounting surfaces.

The maximum allowable rotation angle of the RA-sliders are shown in the following table 18 and figure 47. α_1 is the maximum rotation angle counterclockwise, α_2 is clockwise.

NOLLAND
and the second sec

Fig. 46

Slider type	α, [°]	α₂ [°]
RAG18	1	1
RA28G RDA28G	0.85	0.85
RA43G RDA43G	1.3	1.3
		Tab. 18

Maximum offset

It must be noted that the RP- or RU-slider in one rail will turn during the movement and rotation of the RA-slider in the other to allow an axial offset. During the combined effect of these movements, you must not exceed the maximum values (see tab. 19). B_{onom} is a recommended nominal starting value for the position of a RP- or RU-slider when part of a tolerance compensation system.

Slider type	B _{onom} [mm]	Angle α [°]
RPG18	16.5	1°
RP28G RDP28G	24	1.7°
RP43G RDP43G	37	2.6°
RUG18	16.5	1°
RU28G RDU28G	24	1.7°
RU43G RDU43G	37	2.6°
		Tah 10

Tab. 19

If a RA-slider is used in combination with a RP- or RU-slider with guaranteed problem-free running and without extreme slider load, a pronounced height difference between the two rails can also be compensated. The following illustration shows the maximum height offset b of the mounting surfaces in relation to the distance a of the rails (see fig. 49).

Fig. 49

Even the A+P/U-system can be used in different arrangements. If the same example as with the V+P/U-system is observed (see pg. CR-25, fig. 45), this solution, in addition to the prevention of vibrations and moments, also enables the compensation of larger deviations in parallelism in the vertical direction, without negative consequences to the guide. This is particularly important for longer strokes as it is more difficult to obtain a correct vertical parallelism.

Preload >

Preload classes

The factory installed systems, consisting of rails and sliders, are available in two preload classes:

Standard preload K1 means a rail-slider combination with minimum preload which means the rollers are adjusted free of clearance for optimal running properties.

Usually preload K2 is used for rail-slider systems for increasing the rigidity. When using a system with K2 preload a reduction of the loading capacities and service life must be taken into consideration (see tab. 20).

Preload class	Reduction y
K1	-
К2	0.1
	Tab. 20

This coefficient y is used in the calculation formula for checking the static load and lifetime (see pg. CR-95, fig. 172 and pg. CR 99, fig. 189). The interference is the difference between the contact lines of the rollers and the raceways of the rail.

Preload class	Interference* [mm]	Rail size
K1	0.01	all
К2	0.03	18
	0.04	28
	0.06	43
* Measured on the largest interior dimension between the raceways Tab. 2		

Drive force

Frictional resistance

The drive force required for moving the slider is determined by the combined resistance of the rollers, wipers and seals.

The ground raceways and rollers have a minimal coefficient of friction, which remains almost the same in both the static and dynamic state. The wiper and longitudinal seals are designed for an optimum protection of the system, without a significant negative influence on the quality of motion. The overall friction of the Compact Rail also depends on external factors such as lubrication, preload and additional forces. Table 22 below contains the coefficients of friction for each slider type.

Fig. 51

Size	μ Roller friction	μ_w Wiper friction	$\mu_{\rm s}$ Friction of longitudinal seals
18	0.003		0.0015
28	0.003	ln (m · 1000)*	In (m · 1000)*
43	0.005	0.06 · m · 1000	0.15 · m · 1000
* Kilograms must be used fo	r load m		Tab. 22

The values given in Table 22 apply to external loads, which, with sliders with three rollers, are at least 10 % of the maximum load rating. For calculating the driving force for lower loads, please contact Rollon technical support.

Calculation of drive force

 $F = (\mu + \mu_w + \mu_s) \cdot m \cdot g$

The minimum required drive force for the slider is determined with the coefficients of friction (see tab. 22) and the following formula (see fig. 52):

Example calculation:

If a R...43G slider is used with a radial load of 100 kg, the result is $\mu = 0.005$; from the formula the following is calculated:

$$\mu_{s} = \frac{\ln (100000)}{0.15 \cdot 100000} = 0.00076$$
$$\mu_{w} = \frac{\ln (100000)}{0.06 \cdot 100000} = 0.0019$$

Fig. 53

m = mass (kg) $g = 9.81 \text{ m/s}^2$

Fig. 52

 $F = (0.005 + 0.0019 + 0.00076) \cdot 100 \cdot 9.81 = 7.51 \text{ N}$

Compact Rail

Lubrication

Roller pin lubrication

The bearings inside the rollers are lubricated for life. To reach the calculated service life (see pg. CR-107), a film of lubricant should always be present between the raceway and roller, this also serves to protect against corrosion of the ground raceways.

Lubrication of the raceways

Proper lubrication during normal conditions:

- reduces friction
- reduces wear
- reduces the load of the contact surfaces through elastic deformations
- reduces running noise

Slider lubrication

The sliders are equipped with wiper heads that include lubricated felts which slowly release oil on the raceways for a long time. The felts inside the wiper heads can be refilled with lubrication by means of an oiling syringe with needle of OD 1.85mm (max) through the lubrication hole of the wiper located on the front side.

Lubricant	Thickening agent	Temperature range [°C]	Kinematic viscosity 40°C [mm²/s]
Mineral oil	Lithium soap	-20 to +120	approx 110
			Tab. 23

Fig. 56

The durability of the lubrication delivered by the wiper heads depends on the conditions of use. In the normal clean indoor applications, it is suggested to refill the oil every 0.5 million of cycles, 1000 km or 1 year of use whichever comes first. In different conditions, it could be necessary to refill more often, depending on the level of environment criticity. In case of severe dust and dirt conditions, it is suggested to change the entire wiper head with a new one.

When refilling the oil or the substituting the wiper heads, it is recommended to clean the raceways of the guide.

Corrosion protection

All rails and slider bodies have a standard corrosion protection system by means of electrolytic-zinc plating according to ISO 2081, except for size 18 rails where the standard treatment is Rollon-Nox hardening. If increased corrosion protection is required, application-specific surface treatments are available upon request for rails and slider bodies sizes 28 and 43, e.g. approved nickel plated for use in the food industry. In this case, the chosen treatment must be specificed in the order for both rails and sliders using the appropriate code shown in the table below. For more information contact Rollon technical support.

Treatment	Characteristics
Rollon-Nox	Patented high depth nitride hardening and black oxidation treatment that provides good durability under high loads or frequencies and good corrosion resistance. It is standard for rails size 18 and it's not available for other sizes.
Zinc Plating ISO 2081	Standard treatment for rails sizes 28-43 and all slider bodies, it is ideal for indoor applications. When applied to the rail, it is removed from the raceways by the subsequent grinding process. Zinc-plated sliders are supplied with steel rollers. Not available for size 18.
ZincNickel IS019598 (Z)	Ideal for outdoor applications. Sliders ordered with ZincNickel treatment are supplied with stainless steel rollers to further increase the corrosion resistance. Not available for size 18.
Rollon E-coating (K)	As zinc-plated version with additional electro painting that provides a fine black finishing to the entire rail. When applied to the rail, the slider can partially remove the coating from the raceways on the running contact point after a period of use. Sliders ordered with Rollon E-Coating are supplied with stainless steel rollers to further increase the corrosion resistance.
Nickel Plating (N)	Provides high resistance to chemical corrosion and is ideal for applications in medical or food related environments. When applied to the rail, raceways are coated too. Sliders ordered with Nickel Plating treatment are supplied with stainless steel rollers to further increase the corrosion resistance. Not available for size 18.

Tab. 24

Speed and acceleration

The Compact Rail product family is suitable for high operating speeds and accelerations.

Size	Speed [m/s]	Acceleration [m/s²]
18	3	10
28	5	15
43	7	15
		Tab. 25

Operating temperatures

The temperature range for continuous operation is: -20 °C / +120 °C with occasional peaks up to +150 °C.

Installation instructions

Fixing holes

V-holes with 90° bevels

The selection of rails with 90° countersunk holes is based on the precise alignment of the threaded holes for installation. Here the complex alignment of the rail to an external reference is omitted, since the rail aligns during installation by the self-centering of the countersunk screws on the existing hole pattern.

Fig. 57

C-holes with cylindrical counterbore

When a rail with counterbored holes is delivered, the Torx® screws are provided in the right quantity. The cylindrical screw has, as shown, some play in the countersunk fixing hole, so that an optimum alignment of the rail can be achieved during installation (see fig. 58).

The area T is the diameter of the possible offset, in which the screw center point can move during the precise alignment.

Rail type	Area T [mm]	
TMGC18	Ø 1.0	Γ
TGC28	Ø 1.0	
TGC43	Ø 2.0	
	Tab. 26	

Chamfers

Chamfers must be realized for both C-holes and V-holes rails. The minimum chamfers on the fixing threads are listed on the table below.

Size	Chamfer C-holes [mm]	Chamfer V-holes [mm]
18	0.5 x 45°	0.5 x 45°
28	0.6 x 45°	1 x 45°
43	1 x 45°	1 x 45°
		Tab. 27

Adjusting the sliders

If requested in the order, rails and sliders are delivered as a system with factory adjustment. If rails and sliders are supplied separately or if the slider is to be mounted in another rail, the bearings will need to be adjusted. For sections 28 and 43, the preload can be calibrated using one of the following procedures. For section 18, the only suitable approach is to use the hexagonal spanner.

Common preliminary operations:

- Check that the raceways are clean and remove the wipers, to increase sensitivity for proper preload.
- (2) Place the slider in the rail. It may be necessary to align the bearings to be adjusted with those fixed, to facilitate insertion. Excessive offset may make insertion difficult. Use a flat or hexagonal spanner.
- (3) Use a medium threadlocking adhesive in the screws.
- (4) Lightly tighten the upper bearing screw without over-tightening. Vice versa if the screw has already been previously tightened, loosen the bearing fixing screws slightly. The bearing must be able to rotate but should not be completely free. Only adjust the eccentric bearings (without the center marked).

With flat spanner

- (5) Position the slider at one end of the rail to simplify insertion of the flat spanner.
- (6) Insert the flat spanner supplied to the side, between the rail and the slider. Take care to insert it from the end of the slider, sliding it under the side seal until it reaches the bearing (Fig. 60). Use the flat spanner to engage the hexagon of the excentic bearing.
- (7) Turn the flat adjustment spanner clockwise so that the eccentric bearing contacts the raceway opposite the factory-set fixed bearings, thus reducing the slider clearance to zero. Avoid applying a high preload, which would cause high wear and reduce service life.
- (8) While holding the rolling pin in the correct position with the flat adjustment spanner, tighten the fixing screw to ensure that the pin is first locked in position.
- (9) Run the slider and check the preload over the entire length of the rail. The movement must be smooth. If any oscillation/clearance or excessive force is observed, repeat the adjustment operation. Preload is optimized when the slider runs smoothly and without play.
- (10) For sliders with more than 3 bearings, repeat this procedure for each one to be adjusted. Ensure that all bearings have uniform contact with the raceways.
- (11) While maintaining the angular position of the pin with the flat spanner, tighten the adjusted bearing fixing screw with a torque spanner. The prescribed tightening torque is shown in table 28.
- (12) Reinstall the wipers.

Slider type	Tightening torque [Nm]
R18G	3
R28G	9
R43G	22

Tab. 28

With hexagonal spanner

- (5) Lock the rail on a stable support so that your hands are free.
- (6) Insert the hexagonal spanner into the pin, passing it through a hole in the track. Turn the hexagonal key slightly so that the eccentric bearing contacts the raceway opposite the factory-set fixed bearings, thus reducing the slider clearance to zero.

When turning, support the upper screw by turning in the same direction with the second hexagonal spanner to prevent loosening or changes in preload settings.

- (7) While firmly holding the hexagonal spanner inserted in the off-center pin with one hand, use the other hexagonal spanner to turn and tighten the upper sealing screw of the bearing. Do not lock or unlock the off-center bearing by rotating the pin. Always turn the top screw to lock or loosen the bearing.
- (8) Slide the slider and check the preload over the entire length of the rail. The movement must be smooth. If any oscillation/clearance or excessive force is observed, repeat the adjustment operation. Preload is optimized when the slider runs smoothly and without play.
- (9) Preload values can be checked by slowly inserting the slider at the end of the rail. The insertion force is proportional to the preload. Normally a good setting corresponds to the following min/max forces shown in table 29.
- (10) For sliders with more than 3 bearings, repeat this procedure for each one to be adjusted. Ensure that all bearings have uniform contact with the raceways.
- (11) Tighten the rolling pin/screw definitively precisely using a torque spanner to ensure the correct tightening torque, in accordance with the values in table 28, while holding the hexagonal spanner to the pin, to avoid variations in the preload parameters. Always turn the top screw to lock or loosen the bearing.
- (12) Reinstall the wipers.

Clider ture	Inserting force		
Slider type	F _{min} [N]	F _{max} [N]	
RG18	0,5	2	
R28G	1	5	
R43G	2	10	

Slider size	X [mm]	Ø A [mm]	B min. [mm]	Radius R [mm]
18	0.30	-	-	-
28	0.44	8 + 0.05/+0.02	2	0.5
43	0.90	11 + 0.05/+0.02	3	0.5
				Tab. 30

If purchasing "Radial ball bearing rollers" to install on your own structure (see p. CR-18) we advise:

- Using a maximum of 2 concentric radial ball bearing rollers
- Offset the seats of the concentric radial ball bearing rollers with respect to those of the eccentric radial ball bearing rollers according to the table 30.

C R

Installing the single rail

The rails can be installed in two positions relative to the external force. For axial loading of the slider (fig. 64 pos. 2), the load capacity is reduced because of the decline in contact area caused by the change in position. Therefore, the rails should be installed in such a way that the load on the rollers acts in the radial direction (fig. 64, pos. 1). The number of fixing holes in the rail in combination with screws of property class 10.9 is dimensioned in accordance with the load capacity values. For critical applications with vibrations or higher demand for rigidity, a support of the rail (fig. 64, pos. 3) is advantageous.

This reduces deformation of the sides and the load on the screws. The installation of a rail with counterbored holes requires an external reference for alignment. This reference can also be used simultaneously as rail support if required. All information in this section on alignment of the rails, refers to rails with counterbored holes. Rails with countersunk holes self-align using the specified fixing hole pattern (see pg. CR-34, fig. 57).

Rail installation with reference surface as support

(1) Remove unevenness, burrs and dirt from the support surface.

(2) Press the rail against the support surface and insert all screws without tightening them.

(3) Start tightening the fixing screws to the specified torque on one end of the rail while continuing to hold pressure on the rail against the support surface.

Screw type	Torx [®] tightening torque [Nm]	Countersunk tightening torque [Nm]					
M4 (TMG18)	3	3					
M5 (TG28)	9	6					
M8 (TG43)	22	25					
		Tab 01					

Tab. 31

Rail installation without support

(1) Carefully lay the guide rail with installed slider on the mounting surface and slightly tighten the fixing screws so that the guide rail lightly touches the mounting surface.

(2) Install a dial indicator so that the offset of the rail to a reference line can be measured. Now position the slider in the center of the rail and set the dial indicator to zero. Move the slider back and forth between each two hole spacings and carefully align the rail. Fasten the three center screws of this area now with the specified tightening torque, see fig. 68.

(3) Now position the slider on one end of the rail and carefully align the rail to zero on the dial indicator.

(4) Begin to tighten the screws as specified while moving the slider together with the dial indicator. Make sure that it does not show any significant deflection. Repeat this procedure from the other end of the rail.

Parallel installation of two rails

When two rails with guiding sliders RV, a V+P system or a V+U system are installed the height difference of the two rails must not exceed a certain value (obtainable from the table below) in order to ensure proper guiding. These maximum values result from the maximum allowable twisting angle of the rollers in the raceways (see tab. 32). These values account for a load capacity reduction of 30% on the rail and must absolutely be maintained in every case.

Size	α
18	1 mrad (0.057°)
28	2.5 mrad (0.143°)
43	3 mrad (0.171°)
	Tab. 32

When using two rails, the maximum parallelism deviation must not be exceeded (see tab. 33). Otherwise stresses can occur, which can result in a reduction in load capacity and service life.

Rail size	K1	К2
18	0.03	0.02
28	0.04	0.03
43	0.05	0.04
		Tab. 33

Note: For parallelism problems, it is recommended to use a V+P/U or A+P/U system, since these combinations compensate for inaccuracies (see pg. CR-24, or CR-26).

Parallel installation of two rails

(1) Clean chips and dirt from the prepared mounting surfaces and fasten the first rail as described in the section on installation of a single rail.(2) Fasten the second rail on the ends and the center. Tighten the screws in Position A and measure the distance between the raceways of the two rails.

Fig.72

(3) Fasten the rail in Position B so that the distance between the raceways does not exceed the measured values in Position A while maintaining the tolerances (see pg. CR-30, tab. 22) for parallel rail installation.

(4) Fasten the screw in Position C so that the distance of the raceways is as close to an average between the two values from A and B as possible.(5) Fasten all other screws and check the specified tightening torque of all fixing screws (see pg. CR-38, tab. 31).

Installation of the self-aligning systems

When using a two-track parallel linear guide we recommend the use of a misalignment compensation system: the combination of a V+P/U sliders to compensate for deviations in parallelism or A+P/U sliders to compensate for deviations in parallelism in two planes.

Installation steps

(1) For a compensating system, the rail with the guiding slider RV is always installed first. This is then used as a reference for the compensating bearing rail.

Then proceed as described in the section on installation of a single rail (see pg. CR-37).

(2) Install the other bearing rail and only tighten the fixing screws slightly.(3) Insert the sliders in the rails and install the element to be moved, without tightening its screws.

(4) Insert the element in the center of the rails and tighten it, use screws class 10.9.

(5) Tighten the center rail fixing screws to the specified torque (see pg.CR-38, tab. 31).

≥ Joined Rails

If long guide rails are required, two or more rails can be joined to the desired length. When putting guide rails together, be sure that the register marks shown in fig. 78 are positioned correctly.

For applications with parallel joined guide rails we suggest them to fe fabricated asymmetric.

General information

The maximum available rail length in one piece is indicated in table 5 on page CR-11. Longer lengths are achieved by joining two or more rails (joined rails).

Rollon then machines the rail ends at a right angle to the impact surfaces and marks them. Additional fixing screws are included with the delivery, which ensure a problem-free transition of the slider over the joints, if the following installation procedures are followed. Two additional threaded holes (see fig. 79) are required in the load-bearing structure. The included end fixing screws correspond to the installation screws for the rails for cylindrical counterbores (see pg. CR-34).

The alignment fixture for aligning the rail joint can be ordered using the designation given in the table (see pg. CR-19, tab. 11).

Rail type	A [mm]	Threaded hole (load-bearing structure)	Screw type	L [mm]	Alignment fixture
TMGC18 - TMGV18	7	M4		8	ATMG18
TGC28 - TGV28	8	M5	see pg. CR-19	10	ATG28
TGC43 - TGV43	11	M8	pgron to	16	ATG43

Tab. 34

Installation of joined rails

After the fixing holes for the rails are made in the load-bearing structure, the joined rails can be installed according to the following procedure: (1) Fix the individual rails on the mounting surface by tightening all screws except for each last one on the rail joint.

(2) Install the end fixing screws without tightening them (see fig. 80).

(3) Place the alignment fixture on the rail joint and tighten both set screws uniformly, until the raceways are aligned (see fig. 81).

(4) After the previous step (3) it must be checked if both rail backs lie evenly on the mounting surface. If a gap has formed there, this must be shimmed.

(5) The bottom of the rails should be supported in the area of the transition. Here a possible existing gap must be looked for, which must be closed for correct support of the rail ends by shims.

(6) Insert the key through the holes in the alignment fixture and tighten the screws on the rail ends.

(7) For rails with 90° countersunk holes, tighten the remaining screws starting from the rail joint in the direction of the rail center. For rails with cylindrical counter-sunk holes, first adjust the rail to an external reference, then proceed as described above.

(8) Remove the alignment fixture from the rail.

С

R

Ordering key // 🗸

Note on ordering: rails length codes are always 5 digits, sliders length codes are always 3 digits. Use zeroes as a prefix when lengths are shorter.

Ordering example: TGV-03600/2/RV43G-4A-N

Rail

TGV	-43	-03600	-N								
			Surface prot	tection (if different from Standard ISO 2081) see pg. CR-33, tab. 24							
		Rail length in mm see pg. CR-11, tab. 5									
	Size see pg. CR-11										
Rail type see	Rail type see pg. CR-11, tab. 5										

Ordering examples: TGV-43-03600-N (single rail); TGV-43-05680-N (joined rails) Rail composition: 1x880+2x2400 (only for joint processed rails)

Hole pattern: 40-10x80-40//40-29x80-40//40-29x80-40 (please always specify the hole pattern separately)

Slider

	RV	43G	-4	Α	-N										
					Curfo o o roma	testion (if diff.	event from Otendard and an OD 22 tob 04								
					Surface pro		erent from Standard) see pg. CR-33, tab. 24								
				Configuration	n depending (on type of slid	der see pgs. CR-12 and CR-14								
			Number of re	lumber of rollers see pg. CR-8											
		Size see pg.	CR-11												
3	Slider type <i>s</i>	ee pg. CR-12	,												
0	rdering exar	nple: RV43G-	4A-N												
V	Vipers														

ZK-WR	43G											
	Size											
Wiper type a	see pg. CR-19	19										

Ordering example: ZK-WR43G

Note on ordering: every kit contains a pair of wipers. Two wipers per slider are always required.

ROLLON

ROLLON

Mar. 10.00 00.00

Compact Rail

Product explanation $\parallel \checkmark$

Self-aligning linear guides with bearings and C-profile featuring newly designed robust steel slider

Compact Rail is the product family of guide rails consisting of roller sliders with radial bearings which slide on the internal, induction hardened and ground raceways of a C-profile made from cold-drawn roller bearing carbon steel.

Compact Rail consists of three product series: the fixed bearing rail, the compensating bearing rail and the floating bearing rail. They can be combined to create self-aligning systems to compensate misalignment errors on two planes: axially up to 3.9 mm and radially up to 2°. All products are available in zinc plating, with other treatments for higher corrosion resistance as an option. There are five different sizes of guide rails and many different versions and lengths of the slide bearings, depending on the size and load requirement.

The most important characteristics:

- Compact size
- Corrosion resistant surface
- Not sensitive to dirt due to internal raceways and large rollers
- Hardened and ground raceways
- Self-aligning in two planes
- Quieter than recirculating ball systems
- High operating speeds
- Wide temperature range
- Easy adjustment of slider in the guide rail
- Different anticorrosion treatments available for rails and slider bodies

Preferred areas of application:

- Cutting machines
- Medical equipment
- Packaging machines
- Photographic lighting equipment
- Construction and machine technology (doors, protective covers)
- Robots and manipulators
- Automation
- Handling
- Special vehicles
Fixed bearing rails (T-rails)

Fixed bearing rails are used as the main load bearing of radial and axial forces.

Fig. 85

Floating bearing rails (U-rails)

The floating bearing rails are used for load bearing of radial forces and, in combination with the fixed bearing T-rail or compensation K-rail, as a support bearing for occurring moment loads.

Fig. 86

Compensation bearing rails (K-rails)

The compensation bearing rails are used for the load bearing of radial and axial forces. Tolerance compensation in two planes can be implemented in combination with the U-rail.

Fig. 87

Self-aligning system: T+U

The combination of fixed bearing rail and floating bearing rail allows for deviations in parallelism.

1.5

Self-aligning system: K+U

The combination of compensation rail and floating bearing rail allows for deviations in parallelism and height offset.

NSW/NSA-slider

Robust zinc plated steel slider with roller bearings, self-centering heads with wipers, longitudinal seals to protect the internal components and a top sealing strip to prevent accidental tampering of the fixed rollers. The slider body is accurately finished with matte longitudinal edge chamfer and a shining ground flat surface. It is available for all sizes, configurable with up to six rollers depending on the load requirement.

CS-slider

Constructed with zinc-plated steel body and sturdy wipers (optional) made of thermoplastic elastomer. Available for all sizes. Depending on the load requirement, slider is configurable with up to six rollers.

NSD/NSDA-slider

Constructed as the NSW/NSA-slider with mounting holes parallel to the direction of preferred loading. It is available for sizes 28 and 43, with three or five rollers, depending on load case and load direction set with the corresponding configuration.

Rollers

Also available individually in all sizes. Available as eccentric or concentric rollers. Optionally available with splash-proof plastic seal (2RS) or with steel cover disc (2Z; 2ZR for size 63).

Wipers

The slider heads are equipped with special slow release felt pads and are free to rotate with respect to the slider body, so that the felts are always in contact with the raceways to ensure a perfect lubrication. The felts can be grased through a dedicated oil refilling access on the front of the head, simply by means of a syringe oiler.

Alignment fixture

The alignment fixture AT / AK is used during installation of joined rails in order to precisely align the rails with each other.

Fig. 91

Fig. 95

Technical data 🏼 🖊

Performance characteristics:

- Available sizes for T-rail, U-rail: 18, 28, 35, 43, 63
- Available sizes for K-rail: 43, 63
- Max. operating speed: 9 m/s (354 in/s) (depending on application)
- Max. acceleration: 20 m/s² (787 in/s²) (depending on application)
- Max. radial load capacity: 15,000 N (per slider)
- Temperature range: -20 °C to +120 °C (-4 °F to +248 °F) briefly up to max. +150 °C (+302 °F)
- Available rail lengths from 160 mm to 3,600 mm (6.3 in to 142 in) in 80-mm increments (3.15 in), longer single rails up to max. 4,080 mm (160.6 in) on request
- Roller pins lubricated for life
- Roller seal/shield: standard 2Z (steel cover disk), 2RS (splash-proof)
- Rollers material: steel 100Cr6 (also available stainless steel AISI 440)
- Rail raceways are induction hardened and ground
- Rails and slider bodies are standard zinc-plated according to ISO 2081
- Rail material of T- and U-rails in sizes 18: cold-drawn roller bearing carbon steel C43 F
- Rail material of K-rails, as well as T- and U-rails in size 28 to 63: Cf53

Notes:

- The sliders are equipped with rollers that are in alternating contact with both sides of the raceway. Markings on the body around the roller pins indicate correct arrangement of the rollers to the external load
- With a simple adjustment of the eccentric rollers, the desired clearance or preload on the rail and slider can be set.
- Rails in joined design are available for longer transverse distances (see pg. CR-98)
- The K rails are not suitable for vertical installation
- Screws of property class 10.9 must be used
- Differences in screw sizes must be observed
- When mounting the rails, it is crucial to ensure that the mounting holes in the structure are properly chamfered. (see pg. CR-91, tab. 74)
- The general illustrations show NSW-sliders as an example
- Rollers are available also in stainless steel version (see pg. CR-74).

Configurations and behavior of the slider under yawing moment M₂

Individual slider under M₂ moment load

When an overhanging load in an application with a single slider per rail causes an M_z moment in one direction, a 4 to 6 roller Compact Rail slider is available. These sliders are available in both configuration A and B in regards to the roller arrangement to counter the acting M_z moment load. The moment capacity of these sliders in the Mz-direction varies significantly through spacing L_1 and L_2 in accordance with the direction of rotation of M_z . Especially in the use of two parallel rails, for example with a T+U-system,

it is extremely important to pay attention to the correct combination of the slider configuration A and B, in order to use the maximum load capacities of the slider.

The diagrams below illustrate this concept of the A and B configuration for sliders with 4 and 6 rollers. The maximum allowable M_z -moment is identical in both directions for all 3 and 5 roller sliders.

Two sliders under M, moment load

When an overhanging load acts on an application with two sliders per rail and causes an M_z -moment in one direction, different support reactions occur on the two sliders. For this reason, an optimal arrangement of slider configurations must be achieved to reach the maximum load capacities. In practice, when using NSW-sliders with 3 or 5 rollers, the two sliders must be installed rotated by 180° so that the slider is always loaded on the side with the highest number of rollers (with

NSA sliders this is not possible due to different rail geometries).

For an even number of rollers this has no effect. The NSD-sliders with installation option from above or below cannot be installed due to the position of the rollers in reference to the installation side, therefore they are available in the configurations A and B (see fig. 100).

Slider configurations for various load cases

Arrangement DS

This is the recommended arrangement for use of two sliders under $\rm M_z$ moment when using one rail. Also see previous page: Two sliders under $\rm M_z$ moment load.

Arrangement DD

When using a pair of guide rails with two sliders each under M_z moment load, the second system should be designed in arrangement DD. This results in the following combination: one guide rail with two sliders in arrangement DS and the other guide rail with 2 sliders in arrangement DD. This allows even load and moment distribution between the two parallel rails.

Arrangement DA

Standard arrangement if no other information is given. This arrangement is recommended if the load point is located within the two outside points of the sliders.

C R

Load capacities

Slider

The load capacities in the following tables each apply for one slider. When using the slider in U-rails (floating bearing rails) the values are $C_{_{0ax}} = 0$, $M_x = 0$ and $M_y = 0$. When using the sliders in K-rails (compensation rails) the value is: $M_x = 0$.

Туре	No. of			Load cap	acities and	moments			Weight
	rollers	С	C _{Orad}	C _{oax}	M,	M.	M _z [Nm]	[kg]
		[N]	[N]	[N]	[Nḿ]	[Nm]	M _{zd}	M _{zs}	
NSW18-3	3	1530	820	260	1.5	4.7	8.2	8.2	0.076
NSW18-4A	4	1530	820	300	2.8	7	8.2	24.7	0.096
NSW18-4B	4	1530	820	300	2.8	7	24.7	8.2	0.096
NSW18-5	5	1830	975	360	2.8	9.4	24.7	24.7	0.11
NSW18-6A	6	1830	975	440	3.3	11.8	24.7	41.1	0.138
NSW18-6B	6	1830	975	440	3.3	11.8	41.1	24.7	0.138
NSW28-3	3	4260	2170	640	6.2	16	27.2	27.2	0.23
NSW28-4A	4	4260	2170	750	11.5	21.7	27.2	81.7	0.29
NSW28-4B	4	4260	2170	750	11.5	21.7	81.7	27.2	0.29
NSW28-5	5	5065	2580	900	11.5	29	81.7	81.7	0.35
NSW28-6A	6	5065	2580	1070	13.7	36.2	81.7	136.1	0.42
NSW28-6B	6	5065	2580	1070	13.7	36.2	136.1	81.7	0.42
NSW28L-3	3	4260	2170	640	6.2	29	54.4	54.4	0.32
NSW28L-4A	4	4260	2170	750	11.5	29	54.4	108.5	0.34
NSW28L-4B	4	4260	2170	750	11.5	29	108.5	54.4	0.34
NSW28L-4C	4	4260	2170	750	11.5	29	81.7	81.7	0.34
NSW28L-5A	5	5065	2580	900	11.5	29	81.7	81.7	0.36
NSW28L-5B	5	6816	3472	640	6.2	29	54.4	54.4	0.36
NSD28-3A	3	4260	2170	640	6.2	16	27.2	27.2	0.23
NSD28-3B	3	4260	2170	640	6.2	16	27.2	27.2	0.23
NSD28-5A	5	5065	2580	900	11.5	29	81.7	81.7	0.35
NSD28-5B	5	5065	2580	900	11.5	29	81.7	81.7	0.35

Load capacities NSW / NSA / NSD / NSDA

Туре	No. of	No. of Load capacities and moments									
туре	rollers	С		C _{Oax}	Mx	My		[Nm]	[kg]		
	0	[N]	[N]	[N]	[Nm]	[Nm]			0.44		
NSW35-3	3	8040	3510	1060	12.9	33.7	61.5	61.5	0.44		
NSW35-4A	4	8040	3510	1220	23.9	43.3	52.7	158.1	0.53		
NSW35-4B	4	8040	3510	1220	23.9	43.3	158.1	52.7	0.53		
NSW35-5	5	9565	4180	1460	23.9	57.7	158.1	158.1	0.64		
NSW35-6A	6	9565	4180	1780	28.5	72.2	158.1	263.4	0.76		
NSW35-6B	6	9565	4180	1780	28.5	72.2	263.4	158.1	0.76		
NSD35-3A	3	8040	3510	1060	12.9	33.7	61.5	61.5	0.44		
NSD35-3B	3	8040	3510	1060	12.9	33.7	61.5	61.5	0.44		
NSD35-5A	5	9565	4180	1460	23.9	57.7	158.1	158.1	0.64		
NSD35-5B	5	9565	4180	1460	23.9	57.7	158.1	158.1	0.64		
NSW43-3	3	12280	5500	1570	23.6	60	104.5	104.5	0.8		
NSW43-4A	4	12280	5500	1855	43.6	81.5	104.5	313.5	1.02		
NSW43-4B	4	12280	5500	1855	43.6	81.5	313.5	104.5	1.02		
NSW43-5	5	14675	6540	2215	43.6	108.6	313.5	313.5	1.24		
NSW43-6A	6	14675	6540	2645	52	135.8	313.5	522.5	1.47		
NSW43-6B	6	14675	6540	2645	52	135.8	522.5	313.5	1.47		
NSW43L-3	3	12280	5500	1570	23.6	108.6	209	209	1.10		
NSW43L-4A	4	12280	5500	1855	43.6	108.6	209	418	1.17		
NSW43L-4B	4	12280	5500	1855	43.6	108.6	418	209	1.17		
NSW43L-4C	4	12280	5500	1855	43.6	108.6	313.5	313.5	1.17		
NSW43L-5A	5	14675	6540	2215	43.6	108.6	313.5	313.5	1.25		
NSW43L-5B	5	19650	8800	1570	23.6	108.6	209	209	1.25		
NSA43-3	3	12280	5100	1320	0	50.4	96.9	96.9	0.8		
NSA43-4A	4	12280	5100	1320	0	54.3	96.9	290.7	1.02		
NSA43-4B	4	12280	5100	1320	0	54.3	290.7	96.9	1.02		
NSA43-5	5	14675	6065	1570	0	108.7	290.7	290.7	1.24		
NSA43-6A	6	14675	6065	1570	0	108.7	290.7	484.5	1.47		
NSA43-6B	6	14675	6065	1570	0	108.7	484.5	290.7	1.47		
NSA43L-3	3	12280	5100	1320	0	97.7	188.7	188.7	1.10		
NSA43L-4A	4	12280	5100	1320	0	97.7	188.7	377.3	1.17		
NSA43L-4B	4	12280	5100	1320	0	97.7	377.3	188.7	1.17		
NSA43L-4C	4	12280	5100	1320	0	97.7	283	283	1.17		
NSA43L-5A	5	14675	6065	1570	0	97.7	283	283	1.25		
NSA43L-5B	5	19650	8160	1820	0	97.7	188.7	188.7	1.25		
NSD43-3A	3	12280	5500	1570	23.6	60	104.5	104.5	0.8		
NSD43-3B	3	12280	5500	1570	23.6	60	104.5	104.5	0.8		
NSD43-5A	5	14675	6540	2215	43.6	108.6	313.5	313.5	1.24		
NSD43-5B	5	14675	6540	2215	43.6	108.6	313.5	313.5	1.24		
NSD43-3B	3	12280	5100	1320	43.0	50.4	96.9	96.9	0.8		
NSDA43-3A	3	12280	5100	1320	0	50.4	96.9	96.9	0.8		
	5										
NSDA43-5A		14675	6065	1570	0	108.7	290.7	290.7	1.24		
NSDA43-5B	5	14675	6065	1570	0	108.7	290.7	290.7	1.24 Tab.		

				Load cap	acities and	moments			
Туре	Number of rollers	C [N]	C _{orad} [N]	C _{0ax} [N]	M _x [Nm]	M _y [Nm]		M _z Im]	Weight [kg]
		[N]	[N]	[N]	[MIII]	[MIII]	M _{zd}	M _{zs}	
NSW63-3-2ZR	3	30750	12500	6000	125	271	367	367	2.44
NSW63-4A-2ZR	4	30750	12500	7200	250	413	367	1100	3.17
NSW63-4B-2ZR	4	30750	12500	7200	250	413	1100	367	3.17
NSW63-5-2ZR	5	36600	15000	8500	250	511	1100	1100	3.89
NSW63-6A-2ZR	6	36600	15000	10000	350	689	1100	1830	4.60
NSW63-6B-2ZR	6	36600	15000	10000	350	689	1830	1100	4.60
NSA63-3-2ZR	3	30750	11550	5045	0	235	335	335	2.44
NSA63-4A-2ZR	4	30750	11550	5045	0	294	335	935	3.17
NSA63-4B-2ZR	4	30750	11550	5045	0	294	935	335	3.17
NSA63-5-2ZR	5	36600	13745	6000	0	589	935	935	3.89
NSA63-6A-2ZR	6	36600	13745	6000	0	589	935	1560	4.60
NSA63-6B-2ZR	6	36600	13745	6000	0	589	1560	935	4.60
									Tab. 37

Load capacities CS / CSK

		Load capacities and moments								
Туре	Number	С	0	0	M	NA		Mz	Weight	
ijpo	of rollers	[N]	C _{0rad} [N]	C _{0ax} [N]	M _x [Nm]	M _y [Nm]	ןן M _{zd}	lm] M _{zs}	[kg]	
CS18-060	3	1530	820	260	1.5	4.7	8.2	8.2	0.04	
CS18-080A	4	1530	820	300	2.8	7	8.2	24.7	0.04	
CS18-080A	4	1530	820	300	2.8	7	24.7	8.2	0.05	
CS18-100	5	1830	975	360	2.8	9.4	24.7	24.7	0.05	
CS18-100A	6	1830	975	440	3.3	9.4 11.8	24.7	41.1	0.00	
CS18-120B	6	1830	975	440	3.3	11.8	41.1	24.7	0.07	
CS28-080	3	4260	2170	640	6.2	16	27.2	27.2	0.155	
CS28-100A	4	4260	2170	750	11.5	21.7	27.2	81.7	0.195	
CS28-100B	4	4260	2170	750	11.5	21.7	81.7	27.2	0.195	
CS28-125	5	5065	2580	900	11.5	29	81.7	81.7	0.24	
CS28-150A	6	5065	2580	1070	13.7	36.2	81.7	136.1	0.29	
CS28-150B	6	5065	2580	1070	13.7	36.2	136.1	81.7	0.29	
CS35-100	3	8040	3510	1060	12.9	33.7	61.5	61.5	0.27	
CS35-120A	4	8040	3510	1220	23.9	43.3	52.7	158.1	0.33	
CS35-120B	4	8040	3510	1220	23.9	43.3	158.1	52.7	0.33	
CS35-150	5	9565	4180	1460	23.9	57.7	158.1	158.1	0.41	
CS35-180A	6	9565	4180	1780	28.5	72.2	158.1	263.4	0.49	
С\$35-180В	6	9565	4180	1780	28.5	72.2	263.4	158.1	0.49	
CS43-120	3	12280	5500	1570	23.6	60	104.5	104.5	0.53	
CS43-150A	4	12280	5500	1855	43.6	81.5	104.5	313.5	0.68	
CS43-150B	4	12280	5500	1855	43.6	81.5	313.5	104.5	0.68	
CS43-190	5	14675	6540	2215	43.6	108.6	313.5	313.5	0.84	
CS43-230A	6	14675	6540	2645	52	135.8	313.5	522.5	1.01	
СЅ43-230В	6	14675	6540	2645	52	135.8	522.5	313.5	1.01	
CSK43-120	3	12280	5100	1320	0	50.4	96.9	96.9	0.53	
CSK43-150-A	4	12280	5100	1320	0	54.3	96.9	290.7	0.68	
CSK43-150-B	4	12280	5100	1320	0	54.3	290.7	96.9	0.68	
CSK43-190	5	14675	6065	1570	0	108.7	290.7	290.7	0.84	
CSK43-230-A	6	14675	6065	1570	0	108.7	290.7	484.5	1.01	
CSK43-230-B	6	14675	6065	1570	0	108.7	484.5	290.7	1.01	
CS63-180-2ZR	3	30750	12500	6000	125	271	367	367	1.66	
CS63-235-2ZR-A	4	30750	12500	7200	250	413	367	1100	2.17	
CS63-235-2ZR-B	4	30750	12500	7200	250	413	1100	367	2.17	
CS63-290-2ZR	5	36600	15000	8500	250	511	1100	1100	2.67	
CS63-345-2ZR-A	6	36600	15000	10000	350	689	1100	1830	3.17	
CS63-345-2ZR-B	6	36600	15000	10000	350	689	1830	1100	3.17	
CSK63-180-2ZR	3	30750	11550	5045	0	235	335	335	1.66	
CSK63-235-2ZR-A	4	30750	11550	5045	0	294	335	935	2.17	
CSK63-235-2ZR-B	4	30750	11550	5045	0	294	935	335	2.17	
CSK63-290-2ZR	5	36600	13745	6000	0	589	935	935	2.67	
CSK63-345-2ZR-A	6	36600	13745	6000	0	589	935	1560	3.17	
CSK63-345-2ZR-B	6	36600	13745	6000	0	589	1560	935	3.17 Tab. 3	

≥ Rail T, U, K

Holes

Q1 Fixing holes for Torx[®] screws with low head (custom design) included in scope of supply

V¹ Fixing holes for countersunk head screws according to DIN 7991

Туре	Size	A [mm]	B [mm]	D [mm]	M [mm]	E ₁ [mm]	T [mm]	C [mm]	Weight [kg/m]	E ₂ [°]	t [mm]	Q¹ [mm]	V ¹ [mm]
	18	18	8.25	5.75	9	1.5	2.8	9.5	0.55	-	2	M4	M4
	28	28	12.25	8.5	14	1	3	11	1.0	-	2	M5	M5
TLC TLV	35	35	16	12	17.5	2	3.5	14.5	1.65	-	2.7	M6	M6
	43	43	21	14.5	21.5	2.5	4.5	18	2.6	-	3.1	M8	M8
	63	63	28	19.25	31.5	-	8	15	6.0	2x45	5.2	M8	M10
	18	18	8.25	5.75	9	1	2.6	9,5	0.55	-	1.9	M4	M4
	28	28	12	8.5	14	1	3	11	1.0	-	2	M5	M5
ULC ULV	35	35	16	12	17.5	1	3.5	14.5	1.65	-	2.7	M6	M6
-	43	43	21	14.5	21.5	1	4.5	18	2.6	-	3.1	M8	M8
	63	63	28	19.25	31.5	-	8	15	6.0	2x45	5.2	M8	M10
KLC	43	43	21	14.5	21.5	2.5	4.5	18	2.6	-	3.1	M8	M8
KLV	63	63	28	19.25	31.5	-	8	15	6.0	2x45	5.2	M8	M10

Tab. 39

C R

≥ Rail length

Fig. 108

Туре	Size	Min length [mm]	Max length [mm]	Available standard lengths L [mm]
	18	160	2000	160 - 240 - 320 - 400 - 480 - 560 - 640 - 720 - 800 - 880
TLC	28	240	3200	- 960 - 1040 - 1120 - 1200 - 1280 - 1360 - 1440
tlv ULC	35	320	3600	- 1520 - 1600 - 1680 - 1760 - 1840 - 1920 - 2000 - 2080
ULV	43	400	3600	- 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640
	63	560	3600	- 2720 - 2800 - 2880 - 2960 - 3040 - 3120 - 3200 - 3280
KLC	43	400	3600	- 3360 - 3440 - 3520 - 3600
KLV	63	560	3600	

Longer single rails up to max. 4,080 mm on request Longer rail systems see pg. CR-98 Joined rails

NSW/NSA-version slider

NSW/NSA-series 18-28-35-43

C R

Туре	Size	No. of Rollers	A [mm]	B [mm]	C [mm]	G [mm]	F [mm]	X [mm]	Y [mm]	Z [mm]	Yn [mm]	No. of holes	Roller type used*
		3	70	78				20	25	52	9	4	CPA18-CPN18
	18	4	92	100	16	7.2	M5	40	26			2	CPA18
	10	5	112	120	10	1.2	IND	20	26	-	-	4	CPA18
		6	132	140				40	26			3	CPA18
		3	97	108				35	31	78	9.5	4	CPA28-CPN28
	28	4	117	128	24.9	9.7	M5	50	33.5			2	CPA28
	20	5	142	153	24.9	9.7	IND.	25	33.5	-	-	4	CPA28
NSW		6	167	178				50	33.5			3	CPA28
14344	35	3	119	130	32	11.9	1.9 M6	45	37			2	CPA35-CPN35
		4	139	150				60	39.5			2	CPA35
	55	5	169	180	52	11.9		30	39.5	-	-	4	CPA35
		6	199	210				60	39.5			3	CPA35
		3	139	150				55	42	114	12.5	4	CPA43-CPN43
	43	4	174	185	39.5	14.5	M8	80	47			2	CPA43
	-10	5	210	221	00.0	14.0	WIO	40	45	-	-	4	CPA43
		6	249	260				80	44.5			3	CPA43
		3	139	150				55	42	114	12.5	4	CRPA43-CRPN43
NSA	43	4	174	185	39.5	14.5	M8	80	47			2	CRPA43
NOA	-0	5	210 221 39.5	39.5 14.5	5 M8	40	45	-	-	4	CRPA43		
		6	249	260				80	44.5			3	CRPA43

* Information about the roller type, see pg. CR-74, tab. 51

NSW/NSA-series 63

Туре	Size	No. of Rollers	A [mm]	B [mm]	C [mm]	G [mm]	F [mm]	X [mm]	Y [mm]	Z [mm]	Zn [mm]	W [mm]	No. of holes	Roller type used*
		3	195	206				54	16.5	168	34	13.5	4+4	CPA63
NSW	63	4	250	261	60	20.2	MO	54	17				5	CPA63
NOW	03	5	305	316	60	20.2	2 M8	54	17.5	-	-	-	6	CPA63
		6	360	371				54	18				7	CPA63
		3	195	206				54	16.5	168	34	13.5	4+4	CRPA63
NSA	63	4	250	261	60	20.2	20.2 M8	54	17				5	CRPA63
NOA	03	5	305	316	60	20.2		54	17.5		-	-	6	CRPA63
		6	360	371				54	18				7	CRPA63
* Information	about the roll	er type, see po	j. CR-74, ta	b. 51										Tab. 42

C R

CR-63

NSW...L/NSA...L-version slider

NSW...L/NSA...L-series version with long body

Туре	Size	No. of Rollers	A [mm]	B [mm]	C [mm]	G [mm]	F [mm]	X [mm]	Y [mm]	Z [mm]	No. of holes	Roller type used*
NSW28L	28	3 4 5	149	160	24.9	9.7	M5	52	9.5	26	4	CPA28
NSW43L	40	3 4	014	0.05	20 F	145	MO	75 5	10	07	4	CPA43
NSA43L	43 43L		214	225	39.5	14.5	M8	75.5	13	37	4	CRA43
												Tab. 43

C R

NSD/NSDA-version slider

NSD/NSDA-series

Туре	Size	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	G [mm]	M [mm]	S	T [mm]	F [mm]	X [mm]	Y [mm]	No. of holes	Roller type used*
	28	3	97	108	24.9	30.45	9.7	4.7	M5	15	M6	36	30.5	2	CPA28
	20	5	142	153	24.9	30.43	9.7	4.7	IVIJ	15	IVIO	27	30.5	4	CPA28
NSD	35	3	119	130	32	36.35	12.4	6	M6	15	M8	45	37	2	CPA35
NGD	NSD 35	5	169	180	32	50.55	, 12.4	0	IVIO	15	WIO	30	39.5	4	CPA35
	43	3	139	150	39.5	45.25	14.5	7	M6	15	M8	56	41.5	2	CPA43
	40	5	210	221	39.5	43.23	14.5	'	IVIO	15	IVIO	42	42	4	CPA43
NSDA	43	3	139	150	39.5	45.25	14.5	7	M6	M6 15	M8	56	41.5	2	CRPA43
NODA	43	5	210	221	39.0	40.20	14.0	1	IVIO	10	IVIO	42	42	4	CRPA43
* Information ab	* Information about the roller type, see pg. CR-74, tab. 51 Tab. 44														

CS-version slider

CS-series

C R

				[mm]	[mm]	G [mm]	F [mm]	X [mm]	Y [mm]	No. of holes	Roller type used*
		3	60	76	9.5	5.7	M5	20	20	2	CPA18-CPN18
	18	4	80	96	9.5	5.7	M5	40	20	2	CPA18
	10	5	100	116	9.5	5.7	M5	20	20	4	CPA18
		6	120	136	9.5	5.7	M5	40	20	3	CPA18
		3	80	100	14.9	9.7	M5	35	22.5	2	CPA28-CPN28
	00	4	100	120	14.9	9.7	M5	50	25	2	CPA28
	28	5	125	145	14.9	9.7	M5	25	25	4	CPA28
		6	150	170	14.9	9.7	M5	50	25	3	CPA28
		3	100	120	19.9	11.9	M6	45	27.5	2	CPA35-CPN35
00	05	4	120	140	19.9	11.9	M6	60	30	2	CPA35
CS	35	5	150	170	19.9	11.9	M6	30	30	4	CPA35
		6	180	200	19.9	11.9	M6	60	30	3	CPA35
	43	3	120	140	24.9	14.5	M8	55	32.5	2	CPA43-CPN43
		4	150	170	24.9	14.5	M8	80	35	2	CPA43
		5	190	210	24.9	14.5	M8	40	35	4	CPA43
		6	230	250	24.9	14.5	M8	80	35	3	CPA43
		3	180	200	39.5	19.5	M8	54	9	4	CPA63
	<u></u>	4	235	255	39.5	19.5	M8	54	9.5	5	CPA63
	63	5	290	310	39.5	19.5	M8	54	10	6	CPA63
		6	345	365	39.5	19.5	M8	54	10.5	7	CPA63
		3	120	140	24.9	14.5	M8	55	32.5	2	CRPA43-CRPN43
	40	4	150	170	24.9	14.5	M8	80	35	2	CRPA43
	43	5	190	210	24.9	14.5	M8	40	35	4	CRPA43
001/		6	230	250	24.9	14.5	M8	80	35	3	CRPA43
CSK		3	180	200	39.5	19.5	M8	54	9	4	CRPA63
	60	4	235	255	39.5	19.5	M8	54	9.5	5	CRPA63
	63	5	290	310	39.5	19.5	M8	54	10	6	CRPA63
		6	345	365	39.5	19.5	M8	54	10.5	7	CRPA63

Information about the roller type, see pg. CR-74, tab. 51

T-rail with NSW / NSD / CS slider

Configuration	Size	/ [m		l [m	3 m]		C m]	([m	
	18	18	+0.2 -0.10	16.5	±0.15	16	0 -0.2	17	+0.1 -0.3
	28	28	+0.2 -0.10	23.9	±0.15	24.9	0 -0.2	26.45	+0.1 -0.3
TL / NSW	35	35	+0.35 -0.10	30.2	±0.15	32	0 -0.2	33.5	+0.2 -0.4
	43	43	+0.3 -0.10	37	±0.15	39.5	0 -0.2	41.25	+0.2 -0.4
	63	63	+0.3 -0.10	50.5	±0.15	60	0 -0.2	61.5	+0.2 -0.4
	28	28	+0.2 -0.10	23.9	±0.15	24.9	0 -0.2	32	+0.1 -0.3
TL / NSD	35	35	+0.35 -0.10	30.2	±0.15	32	0 -0.2	37.85	+0.2 -0.4
	43	43	+0.3 -0.10	37	±0.15	39.5	0 -0.2	47	+0.2 -0.4
	18	18	+0.25 -0.10	15	+0.15 -0.15	9.5	0 -0.05	14	+0.05 -0.25
	28	28	+0.25 -0.10	23.9	+0.15 -0.15	14.9	0 -0.10	21.7	+0.05 -0.35
TL / CS	35	35	+0.35 -0.10	30.2	+0.10 -0.30	19.9	+0.05 -0.15	27.85	+0.10 -0.30
	43	43	+0.35 -0.10	37	+0.15 -0.15	24.9	0 -0.15	34.3	+0.10 -0.30
	63	63	+0.35 -0.10	49.8	+0.15 -0.15	39.5	+0.15 0	51.6	+0.15 -0.30 Tab. 46

U-rail with NSW / NSD / CS slider

Configuration	Size		A [mm]		C [mm]) m]
	18	18	+0.25 -0.10	16.5	16	0 -0.2	17	+0.1 -0.3
	28	28	+0.25 -0.10	23.9	24.9	0 -0.2	26.45	+0.1 -0.3
UL / NSW	35	35	+0.35 -0.10	30.2	32	0 -0.2	33.5	+0.2 -0.4
	43	43	+0.35 -0.10	37	39.5	0 -0.2	41.25	+0.2 -0.4
	63	63	+0.35 -0.10	50.5	60	0 -0.2	61.5	+0.2 -0.4
	28	28	+0.25 -0.10	23.9	24.9	0 -0.2	32	+0.1 -0.3
UL / NSD	35	35	+0.35 -0.10	30.2	32	0 -0.2	37.85	+0.2 -0.4
	43	43	+0.35 -0.10	37	39.5	0 -0.2	47	+0.2 -0.4
	18	18	+0.25 -0.10	15	9.5	0 -0.05	14	+0.05 -0.25
	28	28	+0.25 -0.10	23.9	14.9	0 -0.10	21.7	+0.05 -0.35
UL / CS	35	35	+0.35 -0.10	30.2	19.9	+0.05 -0.15	27.85	+0.10 -0.30
	43	43	+0.35 -0.10	37	24.9	0 -0.15	34.3	+0.15 -0.30
	63	63	+0.35 -0.10	49.8	39.5	+0.15 0	51.6	+0.15 -0.30 Tab. 47

Fig. 119

C R

K-rail with NSA / NSDA / CSK slider

Configuration	Size	/ [m	\ m]	B [mm]		C [mm]		D [mm]	
KL / NSA	43	43	+0.35 -0.1	37	±0.15	39.5	0 -0.2	41.25	+0.2 -0.4
KL / NSA	63	63	+0.35 -0.1	50.5	±0.15	60	0 -0.2	61.5	+0.2 -0.4
KL / NSDA	43	43	+0.35 -0.1	37	±0.15	39.5	0 -0.2	41.25	+0.2 -0.4
KL / CSK	43	43	+0.35 -0.10	37	+0.15 -0.15	24.9	0 -0.15	34.3	+0.10 -0.30
nl / USN	63	63	+0.35 -0.10	49.8	+0.15 -0.15	39.5	+0.15 0	51.6	+0.15 -0.30
									Tab. 48

Offset of fixing holes

Principle representation of offset

Fig. 121

C R

Configura- tion	Size	δ nominal [mm]	δ maximum [mm]	δ minimum [mm]	Configura- tion	Size	δ nominal [mm]	δ maximum [mm]	δ minimum [mm]
	18		+0.5	-0.5		18	0.35	+0.75	-0.2
	28		+0.5	-0.5		28	0.25	+0.6	-0.35
TLC / NSW	35		+0.6	-0.6	TLC / CS	35	0.35	+0.7	-0.35
	43		+0.6	-0.6		43	0.35	+0.8	-0.35
	63		+0.65	-0.65		63	0.35	+0.6	-0.35
	43		+0.6	-0.6		43	0.35	+0.8	-0.35
KLC / NSA	63		+0.65	-0.65	KLC / CSK	63	0.35	+0.6	-0.35
	18		+0.5	-0.5		18	0.3	+0.7	-0.2
	28		+0.5	-0.5		28	0.3	+0.6	-0.3
ULC / NSW	35		+0.6	-0.6	ULC / CS	35	0.35	+0.7	-0.35
	43		+0.6	-0.6		43	0.4	+0.75	-0.35
	63	0	+0.65	-0.65		63	0.35	+0.6	-0.25
	18	U	+0.35	-0.35		18	0.35	+0.6	-0.15
	28		+0.35	-0.35		28	0.25	+0.45	-0.3
TLV /NSW	35		+0.45	-0.45	TLV / CS	35	0.35	+0.55	-0.3
	43		+0.45	-0.45		43	0.35	+0.65	-0.3
	63		+0.5	-0.5		63	0.35	+0.45	-0.35
KLV / NSA	43		+0.45	-0.45	KLV / CSK	43	0.35	+0.65	-0.3
KLV / NOA	63		+0.5	-0.5	KLV / USK	63	0.35	+0.45	-0.35
	18		+0.35	-0.35		18	0.3	+0.55	-0.15
	28		+0.35	-0.35		28	0.3	+0.45	-0.25
ULV / NSW	35		+0.45	-0.45	ULV / CS	35	0.35	+0.55	-0.3
	43		+0.45	-0.45		43	0.4	+0.6	-0.3
	63		+0.5	-0.5		63	0.35	+0.45	-0.25
				Tab. 49					Tab. 50

Accessories

Rollers >

Seals: 2RS is the splash-proof seal, 2Z (2ZR for size 63) is the steel cover disc Note: The rollers are lubricated for life

-	Туре	A	B	D	e	H	K	G	F	С		Weight
Steel	Inox	[mm]		[N]	[N]	[kg]						
CPN18-2RS	CXPNX18-2RS	14	4	6	-	1.55	1.8	5.5	M4	765	410	0.004
CPN18-2Z	-	14	4	6	-	1.55	1.8	5.5	M4	765	410	0.004
CPA18-2RS	CXPAX18-2RS	14	4	6	0.4	1.55	1.8	5.5	M4	765	410	0.004
CPA18-2Z	-	14	4	6	0.4	1.55	1.8	5.5	M4	765	410	0.004
CPN28-2RS	CXPNX28-2RS	23.2	7	10	-	2.2	3.8	7	M5	2130	1085	0.019
CPN28-2Z	-	23.2	7	10	-	2.2	3.8	7	M5	2130	1085	0.019
CPA28-2RS	CXPAX28-2RS	23.2	7	10	0.6	2.2	3.8	7	M5	2130	1085	0.019
CPA28-2Z	-	23.2	7	10	0.6	2.2	3.8	7	M5	2130	1085	0.019
CPN35-2RS	CXPNX35-2RS	28.2	7.5	12	-	2.55	4.2	9	M5	4020	1755	0.032
CPN35-2Z	-	28.2	7.5	12	-	2.55	4.2	9	M5	4020	1755	0.032
CPA35-2RS	CXPAX35-2RS	28.2	7.5	12	0.7	2.55	4.2	9	M5	4020	1755	0.032
CPA35-2Z	-	28.2	7.5	12	0.7	2.55	4.2	9	M5	4020	1755	0.032
CPN43-2RS	CXPNX43-2RS	35	11	12	-	2.5	4.5	12	M6	6140	2750	0.06
CPN43-2Z	-	35	11	12	-	2.5	4.5	12	M6	6140	2750	0.06
CPA43-2RS	CXPAX43-2RS	35	11	12	0.8	2.5	4.5	12	M6	6140	2750	0.06
CPA43-2Z	-	35	11	12	0.8	2.5	4.5	12	M6	6140	2750	0.06
CPN63-2ZR	CXPNX63-2RS	50	17.5	18	-	2.3	6	16	M8	15375	6250	0.19
CPA63-2ZR	CXPAX63-2RS	50	17.5	18	1.2	2.3	6	16	M10	15375	6250	0.19
CRPN43-2Z	CRXPNX43-2RS	35.6	11	12	-	2.5	4.5	12	M6	6140	2550	0.06
CRPA43-2Z	CRXPAX43-2RS	35.6	11	12	0.8	2.5	4.5	12	M6	6140	2550	0.06
CRPN63-2ZR	CRXPNX63-2RS	49.7	17.5	18	-	2.3	6	16	M8	15375	5775	0.19
CRPA63-2ZR	CRXPAX63-2RS	49.7	17.5	18	1.2	2.3	6	16	M10	15375	5775	0.19

C R

Wipers

Tab. 52

Wipers for CS / CSK

Alignment fixture AT (for T- and U-rail)

Rail size	Alignment fixture
18	AT 18
28	AT 28
35	AT 35
43	AT 43
63	AT 63
	Tab. 54

Alignment fixture AK (for K-rail)

Rail size	Alignment fixture
43	AK 43
63	AK 63
	Tab. 55

Fixing screws

When a rail with counterbored holes is delivered, the Torx® screws are provided in the right quantity.

Rail size	d	D [mm]	L [mm]	K [mm]	S	Tightening torque
						[Nm]
18	M4 x 0.7	8	8	2	T20	3
28	M5 x 0.8	10	10	2	T25	9
35	M6 x 1	13	13	2,7	T30	12
43	M8 x 1.25	16	16	3	T40	22
63	M8 x 1.25	13	20	5	T40	35
						Tab. 56

Rail size	Screw type	Usable thread length A [mm]
18	M4 x 8	7.2
28	M5 x 10	9
35	M6 x 13	12.2
43	M8 x 16	14.6
63	M8 x 20	17.2
		Tab. 57

Manual clamp elements

Compact Rail guides can be secured with manual clamping elements. Areas of application are:

- Table cross beams and sliding beds
- Width adjustment, stops
- Positioning of optical equipment and measuring tables

The HK series is a manually activated clamping element. By using the freely adjustable clamping lever (except for HK 18, which uses hexagon socket bolt M6 DIN 913 with 3 mm drive) press the contact profile synchronously on the free surfaces of the rail. The floating mounted contact profiles guarantee symmetrical introduction of force on the guide rail.

C R

Fig. 130

Туре	Size	Holding force	Tightening torque	Dimensions [mm]							М				
		[N]	[Nm]	Н	H ₁	H ₂	H ₃	W	W ₁	W ₂	L	P ₁	P ₂	g ₁	
HK1808A	18	150	0.5	15	3.2	3	-	35	-	-	43	0	0	6	M5
HK2808A	28	1200	7	24	17	5	64	68	38.5	41.5	24	15	15	6	M5
HK4308A	43	2000	15	37	28.5	8	78	105	46.5	50.5	39	22	22	12	M8
HK6308A	63	2000	15	50.5	35	9.5	80	138	54.5	59.5	44	26	26	12	M8

Tab. 58

Linear accuracy

Linear accuracy is defined as the maximum deviation of the slider in the rail based on the side and support surface during straight line movement.

The linear accuracy, depicted in the graphs below, applies to rails that are carefully installed with all the provided screws on a level and rigid foundation.

Deviation of accuracy with two 3 roller sliders in one rail

Supported sides

If a higher system rigidity is required, a support of the rail sides is recommended, which can also be used as the reference surface (see fig. 132). The minimum required support depth can be taken from the adjacent table (see tab. 60).

Rail size	A [mm]	B [mm]
18	5	4
28	8	4
35	11	5
43	14	5
63	18	5
		Tab. 60

T+U-system tolerance compensation

Axial deviations in parallelism

This problem occurs fundamentally by insufficient precision in the axial parallelism of the mounting surfaces, which results in an excessive load on the slider and thus causes drastically reduced service life.

The use of fixed bearing and compensating bearing rail (T+U-system) solves the unique problem of aligning two track, parallel guide systems. By using a T+U-system, the T-rail takes over the motion of the track while the U-rail serves as a support bearing and takes only radial forces and M_z moments.

T+U-system maximum offset

U-rails have flat parallel raceways that allow free lateral movement of the sliders. The maximum axial offset that can be compensated for in each slider of the U-rail is made up of the combined values S_1 and S_2 listed in table 61. Considered from a nominal value B_{nom} as the starting point, S_1 indicates the maximum offset into the rail, while S_2 represents the maximum offset towards the outside of the rail.

Slider type	S ₁ [mm]	S ₂ [mm]	B _{min} [mm]	B _{nom} [mm]	B _{max} [mm]
NSW18	0.3	1.1	16.2	16.5	17.6
NSW28 NSD28	0.6	1.3	23.3	23.9	25.2
NSW35 NSD35	1.3	2.7	28.9	30.2	32.9
NSW43 NSD43	1.4	2.5	35.6	37	39.5
NSW63	0.4	3.5	50.1	50.5	54
CS18	0.3	1.1	14.7	15	16.1
CS28	0.6	1.3	23.3	23.9	25.2
CS35	1.3	2.7	28.9	30.2	32.9
CS43	1.4	2.5	35.6	37	39.5
CS63	0.4	3.5	49.4	49.8	53.3

C R

The application example in the adjacent drawing (see fig. 136) shows that the T+U-system implements a problem-free function of the slider even with an angled offset in the mounting surfaces.

If the length of the guide rails is known, the maximum allowable angle deviation of the screwed surfaces can be determined using this formula (the slider in the U-rail moves here from the innermost position S_1 to outermost position S_2):

Fig. 135

The following table (tab. 62) contains guidelines for this maximum angle deviation $\alpha,$ achievable with the longest guide rail from one piece.

Size	Rail length [mm]	Offset S [mm]	Angle α [°]
18	2000	1.4	0.040
28	3200	1.9	0.034
35	3600	4	0.063
43	3600	3.9	0.062
63	3600	3.9	0.062
			Tab. 62

The T+U-system can be designed in different arrangements (see fig. 137). A T-rail accepts the vertical components of load A U-rail attached underneath the component to be guided prevents the vertical panel from swinging and is used as moment support. In addition, a vertical offset in the structure, as well as possible existing unevenness of the support surface, is compensated.

K+U-system tolerance compensation

Deviations in parallelism in two planes

The K+U-system, like the T+U-system, can compensate for axial deviations in parallelism. Additionally, the K+U system has the option of rotating the slider in the rail, which will compensate for other deviations in parallelism, e.g. height offset.

The unique raceway contour of the K-rail allows the slider a certain rotation around its longitudinal axis, with the same linear precision as with a T-rail. With the use of a K+U-system, the K-rail accounts for the main loads and the motion of the track. The U-rail is used as a support bearing and takes only radial forces and M_z moments. The K-rail must always be installed so that the radial load of the slider is always supported by at least 2 load bearing roller sliders, which lie on the V-shaped raceway (reference line) of the rail.

K-rails and sliders are available in both sizes 43 and 63. The custom NSA-slider may only be used in K-rails and cannot be exchanged with other Rollon sliders. The maximum allowable rotation angle of the NSA- and NSW-sliders are shown in the following table 63 and figure 139. α_1 is the maximum rotation angle counterclockwise, α_2 is clockwise.

Fig. 138

Slider type	α, [°]	α₂ [°]
NSA43 and NSW43 / CSK43 and CSW43	2	2
NSA63 and NSW63 / CSK63 and CSW63	1	1
Values referred to NSW and CSW slider in U rail		Tab. 63

Fig. 139

C R

K+U-system maximum offset

It must be noted that the slider in the U-rail will turn during the movement and rotation of the slider in the K-rail to allow an axial offset. During the combined effect of these movements, you must not exceed the maximum values (see tab. 64). If a maximum rotated NSW or CSW- slider is observed (2° for size 43 and 1° for size 63), the maximum and minimum position of the slider in the U rail results from the values B_{0max} and B_{0min} , which are already considered by the additional rotation caused axial offset. B_{0nom} is a recommended nominal starting value for the position of a NSW or CSW-slider in the U-rail of a K+U-system.

Fig. 140

Slider type	B _{omin} [mm]	B _{onom} [mm]	B _{omax} [mm]
NSW43	37.6	38.85	40.1
NSD43	37.9	39.15	40.4
NSW63	49.85	51.80	53.75
CS43	37.6	38.85	40.1
CS63	49.85	51.80	53.75
			Tab. 64

If a K-rail is used in combination with a U-rail, with guaranteed problemfree running and without extreme slider load, a pronounced height difference between the two rails can also be compensated for. The following illustration shows the maximum height offset b of the mounting surfaces in relation to the distance a of the rails (see fig. 141).

Fig. 141

Even the K+U-system can be used in different arrangements. If the same example as with the T+U-system is observed (see pg. CR-81, fig. 137), this solution, in addition to the prevention of vibrations and moments, also enables the compensation of larger deviations in parallelism in the vertical direction, without negative consequences to the guide. This is particularly important for longer strokes as it is more difficult to obtain a correct vertical parallelism.

Preload

Preload classes

The factory installed systems, consisting of rails and sliders, are available in two preload classes:

Standard preload K1 means a rail-slider combination with minimum preload which means the rollers are adjusted free of clearance for optimal running properties.

Usually preload K2 is used for rail-slider systems for increasing the rigidity. When using a system with K2 preload a reduction of the loading capacities and service life must be taken into consideration (see tab. 65).

Preload class	Reduction y
K1	-
К2	0.1
	Tab. 65

This coefficient y is used in the calculation formula for checking the static load and lifetime (see pg. CR-103, fig. 179 and pg. CR 107, fig. 196). The interference is the difference between the contact lines of the rollers and the raceways of the rail.

e
}
}
j
3, 3
3

 * Measured on the largest interior dimension between the raceways

Tab. 66

External preload

The unique design of the Compact Rail product family enables applying a partial external preload on selected locations along the entire guide.

An external preload can be applied by pressure along the side surfaces of the guide rail according to the drawing below (see fig. 143). This local preload results in higher rigidity only at the locations where it is necessary (e.g. on reversing points with high dynamic auxiliary forces).

This partial preload increases the service life of the linear guide by

avoiding a continually increased preload over the entire length of the guide. Also the required drive force of the linear carriage in the non-preloaded areas is reduced.

The amount of the externally applied preload is determined using two dial indicators by measuring the deformation of the rail sides. These are deformed by thrust blocks with pressure screws. The external preload must be applied when the slider is not directly located in the pressure zone.

Size	A [mm]
18	40
28	55
35	75
43	80
63	120
	Tab. 67

Fig. 143

The graph below indicates the value of the equivalent load as a function of the total deformation of both rail sides. The data relates to sliders with three rollers (see fig. 144).

> **Drive force**

Frictional resistance

The drive force required for moving the slider is determined by the combined resistance of the rollers, wipers and seals.

The ground raceways and rollers have a minimal coefficient of friction, which remains almost the same in both the static and dynamic state. The wiper and longitudinal seals are designed for an optimum protection of the system, without a significant negative influence on the quality of motion. The overall friction of the Compact Rail also depends on external factors such as lubrication, preload and additional forces. Table 68 below contains the coefficients of friction for each slider type.

Fig. 145

С R

Size	μ Roller friction	μ _w Wiper friction	$\mu_{_{S}}$ Friction of longitudinal seals
18	0.003	ln (m · 1000)* 0.98 · m · 1000	0.0015
28	0.003		
35	0.005	In (m · 1000)*	In (m ⋅ 1000)*
43	0.005	0.06 · m · 1000	0.15 · m · 1000
63	0.006		
* Kilograms must be used fo	r load m		Tab. 68

The values given in table 68 apply to external loads, which, with sliders with three rollers, are at least 10 % of the maximum load rating. For calculating the driving force for lower loads, please contact Rollon technical support.

Calculation of drive force

The minimum required drive force for the slider is determined with the coefficients of friction (see tab. 68) and the following formula (see fig. 146):

m = mass (kg) $F = (\mu + \mu_w + \mu_s) \cdot m \cdot g$ $g = 9.81 \text{ m/s}^2$

Fig. 146

Example calculation:

If a NSW43 slider is used with a radial load of 100 kg, the result is $\mu = 0.005$; from the formula the following is calculated:

$$u_{s} = \frac{\ln (100000)}{0.15 \cdot 100000} = 0.00076$$

$$\mu_{w} = \frac{\ln (100000)}{0.06 \cdot 100000} = 0.0019$$

Fig. 147

This is the minimum drive force for this example:

Fig. 148

С R

Lubrication

Roller pin lubrication

The bearings inside the rollers are lubricated for life. To reach the calculated service life (see pg. CR-107), a film of lubricant should always be

Lubrication of the raceways

Proper lubrication during normal conditions:

- reduces friction
- reduces wear
- reduces the load of the contact surfaces through elastic deformations
- reduces running noise

NSW-slider lubrication >

The NSW sliders are equipped with wiper heads that include lubricated felts which slowly release oil on the raceways for a long time. The wiper heads can be recharged from the front through a dedicated access hole by means of an oiling syringe.

Lubricant	Thickening agent	Temperature range [°C]	Kinematic viscosity 40°C [mm²/s]
Mineral oil	Lithium soap	-20 to +120	approx 110
			Tab. 69

present between the raceway and roller, this also serves to protect against

corrosion of the ground raceways.

The durability of the lubrication delivered by the wiper heads depends on the conditions of use. In the normal clean indoor applications, it is suggested to refill the oil every 0.5 million of cycles, 1000 km or 1 year of use, based on the value reached first. In different conditions, it could be necessary to refill more often, depending on the level of environment criticity. In case of severe dust and dirt conditions, it is suggested to change the entire wiper head with a new one.

When refilling the oil or the substituting the wiper heads, it is recommended to clean the raceways of the guide.

CSW-slider lubrication

Lubrication when using C-sliders

The CSW series sliders can be provided with wipers made of thermoplastic elastomer to remove contaminants on the raceways. Since the sliders do not have a self-lubrication kit, manual lubrication of the raceways is

required. A guideline is to lubricate the raceways every 100 km or every 6 months. We recommend a roller bearing lubricant with a lithium base of average consistency (see tab. 70).

Lubricant	Thickening agent	Temperature range [°C]	Kinematic viscosity 40°C [mm²/s]
Roller bearing lubricant	Lithium soap	-20 to +170	approx 160
			Tab. 70

Different lubricants are available on request for special applications:

FDA-approved lubricant for use in the food industry

specific lubricant for the marine technology sector

specific lubricant for high and low temperatures

For specific information, contact Rollon technical support.

Corrosion protection

specific lubricant for clean rooms

All rails and slider bodies have a standard corrosion protection system by means of electrolytic-zinc plating according to ISO 2081. If increased corrosion protection is required, application-specific surface treatments are available upon request for rails and slider bodies e.g. approved nickel plated for use in the food industry. In this case, the chosen treatment must be specificed in the order for both rails and sliders using the appropriate code shown in the table below. For more information contact Rollon technical support.

Treatment	Characteristics
Zinc Plating ISO 2081	Standard treatment for all sizes of rails and slider bodies, it is ideal for indoor applications. When applied to the rail, it is removed from the raceways by the subsequent grinding process. Zinc-plated sliders are supplied with steel rollers.
ZincNickel ISO19598 (Z)	Ideal for outdoor applications. Sliders ordered with ZincNickel treatment are supplied with stainless steel rollers to further increase the corrosion resistance.
Rollon E-coating (K)	As zinc-plated version with additional electro painting that provides a fine black finishing to the entire rail. When applied to the rail, the slider can partially remove the coating from the raceways on the running contact point after a period of use. Sliders ordered with Rollon E-Coating are supplied with stainless steel rollers to further increase the corrosion resistance.
Nickel Plating (N)	Provides high resistance to chemical corrosion and is ideal for applications in medical or food related environments. When applied to the rail, raceways are coated too. Sliders ordered with Nickel Plating treatment are supplied with stainless steel rollers to further increase the corrosion resistance.

Tab. 71

Speed and acceleration

The Compact Rail product family is suitable for high operating speeds and accelerations.

Operating temperatures

The temperature range for continuous operation is: -20 °C / +120 °C with occasional peaks up to +150 °C.

Size	Speed [m/s]	Acceleration [m/s²]
18	3	10
28	5	15
35	6	15
43	7	15
63	9	20
		Tab. 72

Installation instructions

Fixing holes

V-holes with 90° bevels

The selection of rails with 90° countersunk holes is based on the precise alignment of the threaded holes for installation. Here the complex alignment of the rail to an external reference is omitted, since the rail aligns during installation by the self-centering of the countersunk screws on the existing hole pattern.

Fig. 151

C R

C-holes with cylindrical counterbore

When a rail with counterbored holes is delivered, the Torx[®] screws are provided in the right quantity. The cylindrical screw has, as shown, some play in the countersunk fixing hole, so that an optimum alignment of the rail can be achieved during installation (see fig. 152).

The area T is the diameter of the possible offset, in which the screw center point can move during the precise alignment.

Rail type	Area T [mm]
TLC18 - ULC18	Ø 1.0
TLC28 - ULC28	Ø 1.0
TLC35 - ULC35	Ø 1.5
TLC43 - ULC43 - KLC43	Ø 2.0
TLC63 - ULC63 - KLC63	Ø 0.5
	Tab. 73

Chamfers

Chamfers must be realized for both C-holes and V-holes rails. The minimum chamfers on the fixing threads are listed on the table below.

Size	Chamfer C-holes [mm]	Chamfer V-holes [mm]
18	0.5 x 45°	0.5 x 45°
28	0.6 x 45°	1 x 45°
35	0.5 x 45°	1 x 45°
43	1 x 45°	1 x 45°
63	0.5 x 45°	1 x 45°
		Tab. 74

Adjusting the sliders

If requested in the order, rails and sliders are delivered as a system with factory adjustment. If rails and sliders are supplied separately or if the slider is to be mounted in another rail, the bearings will need to be adjusted.

- Check that the rails are clean and remove the wipers to increase sensitivity for proper preload.
- (2) Place the slider in the rail. It may be necessary to align the bearings to be adjusted with those fixed, to facilitate insertion. Excessive offset may make insertion difficult. Use the flat spanner.
- (3) Use a medium threadlocking adhesive in the screws.
- (4) Lightly tighten the upper bearing screw without over-tightening. Vice versa if the screw has already been previously tightened, loosen the bearing fixing screws slightly. The bearing must be able to rotate but should not be completely free. Only adjust the eccentric bearings (without the center marked).
- (5) For NSW/NSA/NSD/NSDA series, place the slider at one end of the rail to simplify insertion of the flat key. For the CSW/CDW series, adjustment can take place at any point on the rail, if desired.
- (6) Insert the flat spanner supplied between the rail and the slider. For NSW/NSA/NSD/NSDA series take care to insert it from the end of the slider, sliding it under the side seal until it reaches the bearing to be adjusted. (Fig. 154). Engage the hexagon of the eccentric bearing

with the flat spanner.

- (7) Turn the flat adjustment spanner clockwise so that the eccentric bearings contacts the raceway opposite the factory-set fixed bearings, thus reducing the slider clearance to zero. Avoid applying a high preload, which would cause high wear and reduce service life.
- (8) While holding the eccentric bearing in the correct position with the flat adjusting spanner, tighten the fixing screw to ensure a stable pin position.
- (9) Run the slider and check the preload over the entire length of the rail. The movement must be smooth. If any oscillation/clearance or excessive force is observed, repeat the adjustment operation. Preload is optimized when the slider runs smoothly and without play.
- (10) For sliders with more than 3 eccentric bearings, repeat this procedure for each one to be adjusted. Ensure that all bearings have uniform contact with the raceways.
- (11) While maintaining the angular position of the pin with the flat spanner, tighten all the bearing retaining screws with a torque spanner to the specified tightening torque shown in Table 75.
- (12) Reinstall the wipers.
- (13) For CSW/CDW series, lubricate the raceways.

Slider size	Tightening torque [Nm]
18	3
28	7
35	7
43	12
63	35
	Tab. 75

Use of radial ball bearing rollers

Slider size	X [mm]	Ø A [mm]	B min. [mm]	Radius R [mm]
18	0,30	6 + 0,025/+0,01	2,1	0,5
28	0,64	10 + 0,03/+0,01	4,0	0,5
35	0,90	12 + 0,05/+0,02	4,5	0,5
43	0,72	12 + 0,05/+0,02	5,5	1
63	0,55	18 + 0,02/-0,02	7	1
				Tab. 76

Fig. 155

If purchasing "Radial ball bearing rollers" to install on your own structure (see p. CR-74) we advise:

- Using a maximum of 2 concentric radial ball bearing rollers
- Offset the seats of the concentric radial ball bearing rollers with respect to those of the eccentric radial ball bearing rollers according to the table (tab. 76).

Fig. 156

C R

Installing the single rail

The T- and K-rails can be installed in two positions relative to the external force. For axial loading of the slider (fig. 157. pos. 2), the load capacity is reduced because of the decline in contact area caused by the change in position. Therefore, the rails should be installed in such a way that the load on the rollers acts in the radial direction (fig. 157, pos. 1). The number of fixing holes in the rail in combination with screws of property class 10.9 is dimensioned in accordance with the load capacity values. For critical applications with vibrations or higher demand for rigidity, a support of the rail (fig. 157, pos. 3) is advantageous.

This reduces deformation of the sides and the load on the screws. The installation of a rail with countersunk holes requires an external reference for alignment. This reference can also be used simultaneously as rail support if required. All information in this section on alignment of the rails, refers to rails with counterbored holes. Rails with countersunk holes self-align using the specified fixing hole pattern (see pg. CR-91, fig. 151).

Rail installation with reference surface as support

(1) Remove unevenness, burrs and dirt from the support surface.

(2) Press the rail against the support surface and insert all screws without tightening them.

(3) Start tightening the fixing screws to the specified torque on one end of the rail while continuing to hold pressure on the rail against the support surface.

Screw type	Torx® tightening torque [Nm]	Countersunk tightening torque [Nm]	
M4 (T, U 18)	3	3	
M5 (T, U 28)	9	6	
M6 (T, U 35)	12	10	
M8 (T, U, K 43)	22	25	
M8 (T, U, K 63)	35	30	
		Tab. 77	

Rail installation without support

(1) Carefully lay the guide rail with installed slider on the mounting surface and slightly tighten the fixing screws so that the guide rail lightly touches the mounting surface.

(2) Install a dial indicator so that the offset of the rail to a reference line can be measured. Now position the slider in the center of the rail and set the dial indicator to zero. Move the slider back and forth between each two hole spacings and carefully align the rail. Fasten the three center screws of this area now with the the specified tightening torque, see pg. fig. 161.(3) Now position the slider on one end of the rail and carefully align the rail to zero on the dial indicator.

Fig. 161

(4) Begin to tighten the screws as specified while moving the slider together with the dial indicator. Make sure that it does not show any significant deflection. Repeat this procedure from the other end of the rail.

Parallel installation of two rails

If two T-rails or a T+U-system are installed, the height difference of the two rails must not exceed a certain value (obtainable from the table below) in order to ensure proper guiding. These maximum values result from the maximum allowable twisting angle of the rollers in the raceways (see tab. 78). These values account for a load capacity reduction of 30% on the T-rail and must absolutely be maintained in every case.

	i	~	- 1	6	:0
г	I	ų	. 1	I C	າວ
		~			

С

R

Size	α
18	1 mrad (0.057°)
28	2.5 mrad (0.143°)
35	2.6 mrad (0.149°)
43	3 mrad (0.171°)
63	5 mrad (0.286°)
	Tab. 78

Example:

NSW43: if a = 500 mm; $b = a^{t} \tan \alpha = 1.5 \text{ mm}$

When using two T-rails, the maximum parallelism deviation must not be exceeded (see tab. 79). Otherwise stresses can occur, which can result in a reduction in load capacity and service life.

Rail size	K1	К2
18	0.03	0.02
28	0.04	0.03
35	0.04	0.03
43	0.05	0.04
63	0.06	0.05
		Tab. 79

Note: For parallelism problems, it is recommended to use a T+U or K+U system, since these combinations compensate for inaccuracies (see pg. CR-80 and following).

Parallel installation of two T-rails

(1) Clean chips and dirt from the prepared mounting surfaces and fasten the first rail as described in the section on installation of a single rail.(2) Fasten the second rail on the ends and the center. Tighten the screws in Position A and measure the distance between the raceways of the two rails.

(3) Fasten the rail in Position B so that the distance between the raceways does not exceed the measured values in Position A while maintaining the tolerances (see pg. CR-95, tab. 79) for parallel rail installation.

Fig. 166

(4) Fasten the screw in Position C so that the distance of the raceways is as close to an average between the two values from A and B as possible.(5) Fasten all other screws and check the specified tightening torque of all fixing screws (see pg. CR-94, tab. 77).

Installation of the T+U- or the K+U-system

When using a two-track parallel linear guide we recommend the use of a fixed bearing / compensating bearing system: The combination of T+Urails for compensation of deviations in parallelism or the K+U-system to compensate for deviations in parallelism in two planes.

Installation steps

(1) For a fixed bearing / compensating bearing system the fixed bearing rail is always installed first. This is then used as a reference for the compensating bearing rail.

Then proceed as described in the section on installation of a single rail (see pg. CR-95).

(2) Install the compensating bearing rail and only tighten the fixing screws slightly.

(3) Insert the sliders in the rails and install the element to be moved, without tightening its screws.

(4) Insert the element in the center of the rails and tighten it, use screws class 10.9.

(5) Tighten the center rail fixing screws to the specified torque (see pg. CR-94, tab. 77).

Ŭ

(6) Move the element to one end of the rail and start tightening the rest of the screws in the direction away from the slider.

С R

Joined Rails

If long guide rails are required, two or more rails can be joined to the desired length. When putting guide rails together, be sure that the register marks shown in fig. 171 are positioned correctly.

For applications with parallel joined guide rails we suggest them to fe fabricated asymmetric.

General information

The maximum available rail length in one piece is indicated in table 40 on page CR-59. Longer lengths are achieved by joining two or more rails (joined rails).

Rollon then machines the rail ends at a right angle to the impact surfaces and marks them. Additional fixing screws are included with the delivery, which ensure a problem-free transition of the slider over the joints, if the following installation procedures are followed. Two additional threaded holes (see fig. 172) are required in the load-bearing structure. The included end fixing screws correspond to the installation screws for the rails for cylindrical counterbores (see pg. CR-91).

The alignment fixture for aligning the rail joint can be ordered using the designation given in the table (see pg. CR-75, tab. 54 and 55).

Fig. 172

Rail type	A [mm]	Threaded hole (load-bearing structure)	Screw type	L [mm]	Alignment fixture
T, U18	7	M4		8	AT18
T, U28	8	M5		10	AT28
T, U35	10	M6		13	AT35
T, U43	11	M8	see pg. CR-91	16	AT43
T, U63	8	M8	19	20	AT63
K43	11	M8		16	AK43
K63	8	M8		20	AK63
					Tab. 80

Installation of joined rails

After the fixing holes for the rails are made in the load-bearing structure, the joined rails can be installed according to the following procedure: (1) Fix the individual rails on the mounting surface by tightening all screws except for each last one on the rail joint.

(2) Install the end fixing screws without tightening them (see fig. 173).

(3) Place the alignment fixture on the rail joint and tighten both set screws uniformly, until the raceways are aligned (see fig. 174).

(4) After the previous step (3) it must be checked if both rail backs lie evenly on the mounting surface. If a gap has formed there, this must be shimmed.

(5) The bottom of the rails should be supported in the area of the transition. Here a possible existing gap must be looked for, which must be closed for correct support of the rail ends by shims.

(6) Insert the key through the holes in the alignment fixture and tighten the screws on the rail ends.

(7) For rails with 90° countersunk holes, tighten the remaining screws starting from the rail joint in the direction of the rail center. For rails with cylindrical counter-sunk holes, first adjust the rail to an external reference, then proceed as described above.

(8) Remove the alignment fixture from the rail.

C R

Rail / slider system

Ordering example: TLC-04560/2/NSW28-4B-2Z-N, TLC-04560/2/CS28-100-2RS-B-N

Rail composition: 1x3280+1x1280 (only for joint processed rails)

Hole pattern: 40-40x80-40//40-15x80-40 (please always specify the hole pattern separately)

Notes on ordering: The rail length codes are always 5 digits, the slider length codes are always 3 digits; use zeroes as a prefix when lengths are shorter

Rail

TLV	-43	-5680	-N		
			Expanded s	urface protection if deviation from Standard ISO 2081	see pg. CR-90, tab.71
		Rail length i	n mm se	ee pg. CR-59, tab. 40	
	Size se	e pg. CR-59,	tab. 39		
Rail type	see pg. CR-	-59, tab. 39			

Ordering example: TLV-43-05680-N

Rail composition: 1x880+2x2400 (only for joint processed rails)

Hole pattern: 40-10x80-40//40-29x80-40//40-29x80-40 (please always specify the hole pattern separately)

Notes on ordering: The rail length codes are always 5 digits; use zeroes as a prefix when lengths are shorter

Slider

NSW	28	-4	В	-2RS	-N	
					Expanded surfa	ace protection if deviation from Standard ISO 2081 9, <i>tab.71</i>
				Roller seal	see pg. CR	74
			Configuratio	n <i>depending</i> (on type of slider	see pg. CR-60 and CR-69
		Number of	Number of rollers / slider length	length se	ee pg. CR-60 an	d CR-69
	Size se	ize see pg. CR-60 and CR-69				
Slider type	see pg. C	CR-60 and CR	-69			

Ordering example: NSW28-4B-2RS-N

Notes on ordering: The slider length codes are always 3 digits; use zeroes as a prefix when lengths are shorter

Wipers

ZK-WNS	28	
	Size	see pg. CR-60 and CR-69
Wiper type	see pg	ng. CR-75, fig. 123, fig.124

Ordering example: ZK-WNS28, CS28-100-2RS-B-N

Note on orderling: every kit contains a pair of wipers. Two wipers per slider are always required.

Calculation formulas

Static load

The radial load capacity rating, C_{0rad} the axial load capacity rating C_{0ax} , and moments M_{x^1} , M_y , M_z indicate the maximum permissible values of the load (see from pg. CR-8 to CR-10 and CR-54, CR-57), higher loads will have a detrimental effect on the running quality. A safety factor, S_0 , is used to check the static load, which takes into account the basic parameters of the application and is defined more in detail in the following table:

Safety factor S₀

No shock nor vibration, smooth and low-frequency reverse, high assembly accuracy, no elastic deformations	1 - 1.5
Normal installation conditions	1.5 - 2
Shock and vibration, high-frequency reverse, significant elastic deformation	2 - 3.5
	Fig. 177

The ratio of the actual load to maximum permissible load may be as large as the reciprocal of the accepted safety factor, S_0 , at the most.

$$\frac{P_{0rad}}{C_{0rad}} \le \frac{1}{S_0} \qquad \frac{P_{0ax}}{C_{0ax}} \le \frac{1}{S_0} \qquad \frac{M_1}{M_x} \le \frac{1}{S_0} \qquad \frac{M_2}{M_y} \le \frac{1}{S_0} \qquad \frac{M_3}{M_z} \le \frac{1}{S_0}$$
Fig. 178

The above formulas are valid for a single load case.

If two or more forces are acting simultaneously, please check the following formula:

$$\frac{P_{0rad}}{C_{0rad}} + \frac{P_{0ax}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} + y \le \frac{1}{S_{0}}$$

$$P_{0rad} = \text{effective radial load (N)}$$

$$P_{0ax} = \text{effective axial load (N)}$$

$$C_{0ax} = \text{permissible axial load (N)}$$

$$M_{1}, M_{2}, M_{3} = \text{external moments (Nm)}$$

$$M_{x}, M_{y}, M_{z} = \text{maximum permissible moments}$$
in the different loading directions (Nm)

$$y = \text{reduction due to preload (see pg. CR-29, Tab. 20 or pg. CR-85, Tab. 65)}$$
Fig. 179

The safety factor S_0 can lie on the lower given limit if the occurring forces can be determined with sufficient precision. If shock and vibration are

present, the higher value should be selected. For dynamic applications higher safety is required. Please contact Rollon technical support.

Slider load

Examples of formulas for determining the forces on the most heavily loaded slider

For an explanation of the parameters in the formulas see pg. CR-106, fig. 194

Slider load:

Fig. 183

Slider load:

$$P_{1a} \cong P_{2a} = \frac{F}{2}$$

$$P_{2b} \cong P_{1b} = F \cdot \frac{a}{b}$$
Fig. 184

Slider load:

$$P_{2} = F \cdot \frac{a}{b}$$
$$P_{1} = P_{2} + F$$

Fig. 185

Note: Applies only if the distance between centers of the sliders $b > 2 \ensuremath{x}$ slider length

Fig. 182

Slider load:

$$P_{1} = \frac{F}{4} - \left(\frac{F}{2} \cdot \frac{b}{c}\right) - \left(\frac{F}{2} \cdot \frac{a}{d}\right)$$

$$P_{2} = \frac{F}{4} - \left(\frac{F}{2} \cdot \frac{b}{c}\right) + \left(\frac{F}{2} \cdot \frac{a}{d}\right)$$

$$P_{3} = \frac{F}{4} + \left(\frac{F}{2} \cdot \frac{b}{c}\right) - \left(\frac{F}{2} \cdot \frac{a}{d}\right)$$

$$P_{4} = \frac{F}{4} + \left(\frac{F}{2} \cdot \frac{b}{c}\right) + \left(\frac{F}{2} \cdot \frac{a}{d}\right)$$

Fig. 189

Note: It is defined that slider no. 4 is always located closest to the point where the force is applied.

Fig. 188

Slider load:

$$P_1 \cong P_2 = F \cdot \frac{a}{b}$$

Fig. 190

Note: Applies only if the distance between centers of the sliders $b > 2 \ensuremath{x}$ slider length

Slider load:

$$P_1 = F$$

 $M_2 = F \cdot a$
Fig. 191

E. 100

C R

Fig. 192

Horizontal movement

Test with a moving element of the weight-force F_g at the instant the direction of measurement changes

tion of movement changes

Inertial force	Slider load at time of reverse	
$F = m \cdot a$	$P_1 = \frac{F \cdot I}{d} + \frac{F_g}{2}$	$P_2 = \frac{F_g}{2} - \frac{F \cdot I}{d}$

Fig. 193

Explanation of the calculation formula

F	=	effective force (N)
F _g	=	weight-force (N)
	=	effective load on the slider (N)
M_1, M_2	=	effective moment (Nm)
m	=	mass (kg)
а	=	acceleration (m/s ²)

Fig. 194

Service life

The dynamic load capacity C is a conventional variable used for calculating the service life. This load corresponds to a nominal service life of 100 km. For values of the individual slider see from pg. CR-8 to CR-10 and CR-54, CR-57. The following formula (see fig. 195) links the calculated theoretical service life to the dynamic load capacity and the equivalent load:

$$L_{\rm Km} = 100 \cdot (\frac{C}{P} \cdot \frac{f_{\rm c}}{f_{\rm i}} \cdot f_{\rm h})$$

- L_{km} = theoretical service life (km)
- C = dynamic load capacity (N)
- P = effective equivalent load (N)
- $f_c = contact factor$
- f_i = application coefficient
- $f_h = stroke factor$

Fig. 195

The equivalent load P corresponds in its effects to the sum of the forces and moments working simultaneously on a slider. If these different load components are known, P results as follows:

$$P = P_r + (\frac{P_a}{C_{0ax}} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z} + y) \cdot C_{0rad}$$

Here the external loads are assumed as constant in time. Brief loads, which do not exceed the maximum load capacities, do not have any relevant effect on the service life and can therefore be neglected.

The contact factor f_c refers to applications in which several sliders pass the same rail section. If two or more sliders move over the same point of a rail, the contact factor according to table 81 to be taken into account in the formula for calculation of the service life.

Number of sliders	1	2	3	4
f _c	1	0.8	0.7	0.63
				Tab. 81

y = reduction due to preload (see pg. CR-29, Tab. 20 or pg. CR-85, Tab. 65)

Fig. 196

The application coefficient f, takes into account the operational conditions in the service life calculation. It has a similar significance to the safety factor $S_{\mbox{\tiny 0}}$ in the static load test. It is calculated as described in the following table:

f	
Neither shocks nor vibrations, smooth and low-frequency direction change; clean operating conditions; low speeds (<1 m/s)	1 - 1.5
Slight vibrations, average speeds (1 - 2.5 m/s) and average frequency of direction change	1.5 - 2
Shocks and vibrations, high speeds (> 2.5 m/s) and high-frequency direction change; extreme dirt contamination	2 - 3.5

Tab. 82

The stroke factor $\boldsymbol{f}_{\!_{h}}$ takes into account the higher load of the raceways and rollers during short strokes on the same total length of run. The corresponding values are taken from the following graph (for strokes longer than 1 m, $f_h = 1$):

Fig. 197

New X-Rail

A versatile linear guide in zinc-plated steel, stainless steel or hardened steel. It simplies the project, improves the performance and reduces the application cost: **6 main advantages**

High quality low carbon cold rolled steel profile with high yield strength

- Indoor applications: zinc-plating ISO 2081, Rollon Nox
- Outodoor applications: stainless steel AISI 316L

The best-performing series PLUS

Steel rails hardened with **Rollon-Nox treatment** of deep nitriding and oxidation for a longer lifetime and higher load capacities.

* Example referred to size 30.

assembly

Easily mount the guide on non-machined structures, reducing total assembly time

Simple roller adjustment to regulate the sliding force perception in assembly phase

Optimal reliability in dirty environments

Newly designed polymer heads for an optimal cleaning of the raceways

Also available with slow release lubricating felt for low maintenance

6

Strength and sturdiness

Thanks to steel slider body

Product explanation $// \checkmark$

X-Rail: linear bearings in stainless steel, zinc-plated steel or hardened steel with Rollon-Nox process.

X-Rail is the product family of roller embossed guide rails for applications in which an economical price to performance ratio and high corrosion resistance are required.

X-Rail linear guides features a rolled C-profile (0 degrees of axial play) or U-profile (1 degree of axial play) and are available in three versions: hardened with Rollon-Nox patented process of deep nitriding and oxidation (N/P-series), zinc-plated steel ISO 2081 (S-series) and stainless steel (X-series). Sizes range from 20 to 45 mm depending on the material of the guide and the type of profile. Every option features dedicated sliders, with compact or solid body.

The most important characteristics:

- Corrosion resistant, FDA/USDA compliant materials
- Compensates for deviations in mounting structure parallelism
- Optimal reliability in dirty environments thanks to internal raceways
- Wide range of operating temperature
- Easy adjustment of sliders

Preferred areas of application of the X-Rail product family:

- Construction and machine technology
 - (e.g., safety doors, washing bay accessories)
- Medical technology

(e.g., hospital accessories, medical equipment)

- Transport (e.g., rail transport, naval, automotive industry)
- Food and beverage industry (e.g., packaging, food processing)
- Building technology
- Energy technology (e.g., industrial furnaces, boilers)

N/P-series

Linear guides and sliders made of hardened steel. The Rollon-Nox hardening process provides the guide with long life and resistance to wear, in addition to a black surface resistant to flame and abrasion. Sliders feature newly designed polymer heads with slow release lubricating felt for low maintenance and an optimal cleaning of the raceways.

Fig. 2

X R

S-series

Linear guides and sliders made of zinc-plated steel. They offer a simple and economical solution for a wide range of applications where high frequency is not required.

Good load capacity/size ratio, tailored designed sliders and ease of assembly are the features that make this product a winning choice compared to selfbuilt or other similar solutions on the market.

X-series

Linear guides and sliders in stainless steel AISI 316L (1.4404) and bearings in AISI 440 (1.4125). They offer a simple and practical solution for all applications where high corrosion resistance is required, in particular for food industry, chemical, pharmaceutical and medical industries. The product is easily washable for applications subject to frequent cleaning. For applications in severe marine environments is available the electropolished version for very high corrosion resistances.

System (T+U-System)

T and U-rail can be used together for compensating deviations in parallelism and tolerances in the mounting structure. The T-rail (fixed rail) bears the main load while the U-rail with flat raceways (compensating rail) allows the bearings to travel axially without constraints.

Rollers

Concentric and eccentric radial ball bearings made of stainless or roller bearing steel are available for each slider. Roller sealing is dependent on the material: 2RS rubber seals or 2Z steel shields. All rollers are lubricated for life.

Fig. 3

Fig. 5

Fig. 6

Technical data 🏼 🗸 🧹

Example of S-series / X-series

Fig. 7

Performance characteristics:

- Max. slider operating speeds in the linear bearing rails: 1.5 m/s (59 in/s) (depending on application)
- Max. acceleration: 2 m/s² (78 m/s²) (depending on application)
- Available rail lengths: from 160 mm to 4000 mm (from 6,3 in to 157 in) in 80 mm increments (3,15 in).
- Rollers lubricated for life

TEN, TEP, UEN, UEP guides

- Available sizes: 26-30-40 type T, 30-40 type U
- Max. radial load capacity: 3240 N
- Operating temperature range: -20 °C to +120 °C (-4°F to +248°F)
- Rail material: S420MC steel hardened with Rollon-Nox patented process
- Rollers material: carbon steel with 2Z shield (dust cover seal)

TES, UES guides

- Available sizes: 20-26-30-40-45 type T, 30-40-45 type U
- Max. radial load capacity: 1740 N
- Operating temperature range: -20 °C to +120 °C (-4°F to +248°F)
- Rail material: S420MC (size 26-30-40) or S355MD (size 20-45) zinc-plated steel ISO 2081
- Rollers material: carbon steel with 2Z shield (dust cover seal)

TEX, UEX guides

- Available sizes: 20-26-30-40-45 type T, 30-40-45 type U
- Max. radial load capacity: 1600 N
- Operating temperature range: -20 °C to +100°C (-4 °F to +212 °F)
- Rail material: stainless steel AISI 316L (1.4404)
- Rollers material: stainless steel AISI 440C (1.4125) with 2RS shield (splashproof seal)

Remarks:

Example of N/P-series

- The sliders are equipped with rollers that are in alternating contact with both sides of the raceway. Markings on the body around the outer roller pins indicate the correct arrangement of the rollers to the external load.
- All the rails are engraved with a tracking code that identifies the production batch.
- With a simple adjustment of the eccentric roller, clearance or the desired preload can be set on the rail and slider.
- Different sliders are available depending on the type and the size of the linear guide. Refer to every chapter for details.
- We do not recommend combining (join together) the rails.
- Recommended fixing screws: ISO 7380 with low head height (special TORX[®] screws are available on request).
- Do not use in applications with high number of cycles. For further information, please contact Rollon Technical Department.

Load capacities

Rail type	Configuration	No. of rollers	C _{orad} [N]	C _{oax} [N]	Dynamic coefficient C [N]
	TEN26 - CEN26-92T	3	1120	380	1280
	TEN26 - CEN26-142T	5	1520	540	1730
TEN/TEP	TEP30 - CEP30-3T	3	1200	420	1360
	TEP30 - CEP30-5T	5	1620	580	1830
	TEN40 - CEN40-135T	3	2400	820	2720
	TEN40 - CEN40-195T	5	3240	1150	3670
	TES20 - CES20	3	326	185	-
	TES26 - CES26-80	3	800	400	-
TES	TES30 - CES30	3	870	435	-
	TES40 - CES40-135	3	1600	800	-
	TES45 - CES45	3	1740	935	-
	TEX20 - CEX20	3	300	170	-
	TEX26 - CEX26-80	3	740	370	-
ТЕХ	TEX30 - CEX30	3	800	400	-
	TEX40 - CEX40-135	3	1470	740	-
	TEX45 - CEX45	3	1600	860	-
Resulting moment loa	ds must be absorbed				Tab. 1

Resulting moment loads must be abs through the use of two sliders

Compensating bearings type U

Rail type	Configuration	No. of rollers	C _{0rad} [N]	Dynamic coefficient C [N]
	UEP30 - CEP30-3T	3	1200	1360
UEN/UEP	UEP30 - CEP30-5T	5	1620	1830
	UEN40 - CEN40-135T	3	1900	2720
	UEN40 - CEN40-195T	5	2560	3670
	UES30 - CESU30-80	3	870	-
UES	UES40 - CES40-135	3	1600	-
	UES45 - CESU45-120	3	1740	-
	UEX30 - CEXU30-80	3	800	-
UEX	UEX40 - CEX40-135	3	1180	-
	UEX45 - CEXU45-120	3	1600	-

Tab. 2

Product dimensions

TEN/TEP - Rollon-Nox hardened steel guides with shaped raceways >

Rail type	Size	A [mm]	B [mm]	T [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	Holes for screws	Weight [kg/m]
TEN	26	26.1	14	2.5	9.5	4.5	11	6	5	M5	0.80
TEP	30	29.5	14.1	2.5	10	4.5	11	6	5	M5	0.95
TEN	40	39.5	20	3	13	6	13	9	4	M8	1.55
											Tab 3

ł	au.	J.

Rail type	Size	Min length [mm]	Max length [mm]	Standard length L [mm]
TEN	26	160	4000	160 - 240 - 320 - 400 - 480 - 560 - 640 - 720 - 800 - 880 - 960 - 1040 - 1120 - 1200 - 1280 - 1360 - 1440 - 1520 - 1600 - 1680 - 1760 - 1840
TEP	30	160	4000	- 1920 - 2000 - 2080 - 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640
TEN	40	160	4000	- 2720 - 2800 - 2880 - 2960 - 3040 - 3120 - 3200 - 3280 - 3360 - 3440 - 3520 - 3600 - 3680 - 3760 - 3840 - 3920 - 4000

Please specify hole pattern separately Special lengths or pitches available upon request, please contact the sales department The highlighted rail length are available from stock

Tab. 4

CEN26 slider for rail TEN26

Fig. 12

X R

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	F	G [mm]	S [mm]	T [mm]	X [mm]	Y [mm]	Zn [mm]	Weight [kg]
CEN26-92T	3	92	100	20	22	МБ	4	3.7	26.1	30	31	10	0.11
CEN26-142T	5	142	150	20	22	M5	4	3.7	20.1	33.5	25	10	0.15
													Tab. 5

CEP30 slider for rail TEP 30

Fig. 13

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	F	G [mm]	S [mm]	T [mm]	X [mm]	Y [mm]	Zn [mm]	Weight [kg]
CEP30-3T	3	92	100	20	20	ME	4	2.2	29.5	30	31	10	0.13
CEP30-5T	5	142	150	20	20	M5	4	3.3	29.0	25	33.5	10	0.17
													Tab. 6

CEN40 slider for rail TEN40

Fig. 14

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	F	G [mm]	S [mm]	T [mm]	X [mm]	Y [mm]	Z [mm]	Zn [mm]	Weight [kg]
CEN40-135T	3	135	146	35	28.65	M6	6	Б	39.5	120	7.5	23	6	0.45
CEN40-195T	5	195	206	30	20.00	IVIO	0	5	39.0	105	45	23	6	0.62
														Tab. 7

UEN/UEP - Rollon-Nox hardened steel guides with flat raceways >

Rail type	Size	A [mm]	B [mm]	T [mm]	E [mm]	F [mm]	G [mm]	H [mm]	Holes for screws	Weight [kg/m]
UEP	30	29.8	16	3	6	11	6	5	M5	1.19
UEN	40	38.5	21	3	6	13	9	4	M8	1.70

Tab. 8

Rail type	Size	Min length [mm]	Max length [mm]	Standard length L [mm]
UEP	30	160	4000	160 - 240 - 320 - 400 - 480 - 560 - 640 - 720 - 800 - 880 - 960 - 1040 - 1120 - 1200 - 1280 - 1360 - 1440 - 1520 - 1600 - 1680 - 1760 - 1840 - 1920 - 2000 - 2080 - 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640
UEN	40	160	4000	- 2720 - 2800 - 2880 - 2960 - 3040 - 3120 - 3200 - 3280 - 3360 - 3440 - 3520 - 3600 - 3680 - 3760 - 3840 - 3920 - 4000

Tab. 9

Please specify hole pattern separately Special lengths or pitches available upon request, please contact the sales department The highlighted rail lengths are available from stock

CEP30 slider for rail UEP30

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D _{nom} [mm]	F	G [mm]	T [mm]	X [mm]	Y [mm]	Zn [mm]	Weight [kg]
CEP30-3T	3	92	100	20	21.1 ±0.6	M5	Λ	29.8	30	31	10	0.13
CEP30-5T	5	142	150	20	21.1 ±0.0	CIVI	4	29.0	25	33.5	10	0.17
												Tab. 10

CEN40 slider for rail UEN40

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D _{.om} [mm]	F	G [mm]	T [mm]	X [mm]	Y [mm]	Z [mm]	Zn [mm]	Weight [kg]
CEN40-135T	3	135	146	05	29.95 ±1.6	M6	6	38.5	120	7.5	23	6	0.45
CEN40-195T	5	195	206	35					105	45			0.62
													Tab. 11

TES - Zinc-plated steel guides with shaped raceways

TES rail in zinc-plated steel

Rail type	Size	A [mm]	B [mm]	T [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	Holes for screws	Weight [kg/m]
TES	20	19.2	10.2	2	6.9	3	7	4.5	2.5	M4	0.47
	26	26.1	14	2.5	9.5	4.5	11	6	5	M5	0.80
	30	29.5	14.1	2.5	10	4.5	11	6	5	M5	0.90
	40	39.5	20	3	13	6	13	9	4	M8	1.55
	45	46.4	24	4	15.5	6.5	11	9	2	M8	2.29

Tab. 12

Rail type	Size	Min length [mm]	Max length [mm]	Standard length L [mm]
	20	160	3120	
	26	160	4000	160 - 240 - 320 - 400 - 480 - 560 - 640 - 720 - 800 - 880 - 960 - 1040 - 1120 - 1200 - 1280 - 1360 - 1440 - 1520 - 1600 - 1680 - 1760 - 1840
TES	30	160	4000	- 1920 - 2000 - 2080 - 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640
	40	160	4000	- 2720 - 2800 - 2880 - 2960 - 3040 - 3120 - 3200 - 3280 - 3360 - 3440 - 3520 - 3600 - 3680 - 3760 - 3840 - 3920 - 4000
	45	320	4000	

Please specify hole pattern separately Special lengths or pitches available upon request, please contact the sales department The highlighted rail lengths are available from stock (3120 only for TES 20)

Tab. 13
CES20 slider for rail TES 20

CES20-80 with compact body and wipers

CES20-60 with solid body (wipers on request)

Fig. 20

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F	G [mm]	S [mm]	T [mm]	Zn [mm]	X [mm]	Y [mm]	Weight [kg]
CES20-80	0	80	86	18	15.9	71	M5	5.5	2.2	19.2	9	60	5.5	0.05
CES20-60	3	60	-	10	17.8	-	M5	6	2.6	19.2	5	20	20	0.04
														Tab. 14

CES26 slider for rail TES 26

CES26-80 with compact body (wipers not available)

Slider type	No. of rollers	A [mm]	C [mm]	D [mm]	F	G [mm]	S [mm]	T [mm]	X [mm]	Y [mm]	Zn [mm]	Weight [kg]
CES26-80	3	80	25	22	M5	4	3.7	26.1	30	25	12.5	0.095
												Tab. 15

CES30 slider for rail TES 30

CES30-88 with compact body and wipers

Fig. 23

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F	G [mm]	S [mm]	T [mm]	Z [mm]	Zn [mm]	X [mm]	Y [mm]	Weight [kg]
CES30-88	3	88	95	27	20.5	80	M5	4.5	3.5	29.5	15	6	70	5	0.11
CES30-80	3	80	-	20	26.5	-	M6	10	3.3	29.5	-	10	35	22.5	0.17

CES40 slider for rail TES 40

CES40-135 with compact body (wipers on request)

rollers	[mm]	[mm]	[mm]		[mm]	[kg]						
CES40-135 3	135	35	28.65	M6	6	5	39.5	120	7.5	23	6	0.450

Tab. 17

CES45 slider for rail TES 45

Fig. 25

CES45-120 with solid body (wipers on request)

Fig. 26

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F	G [mm]	S [mm]	T [mm]	Z [mm]	Zn [mm]	X [mm]	Y [mm]	Weight [kg]
CES45-150	0	150	160	40	31	135	M6	4	5	46.4	23	8.5	120	7.5	0.40
CES45-120	3	120	-	25	38	-	M8	12	5.7	46.4	-	12.5	55	32.5	0.45
															Tab. 18

UES - Zinc-plated steel guides with flat raceways

Rail type	Size	A [mm]	B [mm]	T [mm]	E [mm]	F [mm]	G [mm]	H [mm]	Holes for screws	Weight [kg/m]
	30	29.8	16	3	6	11	6	5	M5	1.39
UES	40	38.5	21	3	6	13	9	4	M8	1.7
	45	43.8	24.5	4	9	11	9	2	M8	2.79
										Tab 10

Tab. 19

X R

Rail type	Size	Min length [mm]	Max length [mm]	Standard length L [mm]							
	30) 160 4	4000	160 - 240 - 320 - 400 - 480 - 560 - 640 - 720 - 800 - 880 - 960 - 1040 - 1120 - 1200 - 1280 - 1360 - 1440 - 1520 - 1600 - 1680 - 1760 - 1840							
UES	40	160	160 4000	- 1920 - 2000 - 2080 - 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640							
	45	320	4000	- 2720 - 2800 - 2880 - 2960 - 3040 - 3120 - 3200 - 3280 - 3360 - 3440 - 3520 - 3600 - 3680 - 3760 - 3840 - 3920 - 4000							

Please specify hole pattern separately Special lengths or pitches available upon request, please contact the sales department The highlighted rail lengths are available from stock

Tab. 20

XR-13

CESU30 slider for rail UES 30

CESU30-80 with solid body (wipers on request)

Slider type	No. of rollers	A [mm]	C [mm]	D _{nom} [mm]	F	G [mm]	T [mm]	X [mm]	Y [mm]	Weight [kg]
CESU30-80	3	80	20	27.95 ± 0.6	M6	10	29.8	35	22.5	0.16

CES40 slider for rail UES 40

CES40-135 with compact body (wipers on request)

Slider type	No. of rollers	A [mm]	C [mm]	D _{nom} [mm]	F	G [mm]	T [mm]	Z [mm]	Zn [mm]	X [mm]	Y [mm]	Weight [kg]
CES40-135	3	135	35	29.95 ± 1.6	M6	6	38.5	23	8	120	7.5	0.45

CESU45 slider for rail UES 45

CESU45-120 with solid body (wipers on request)

Slider type	No. of rollers	A [mm]	C [mm]	D _{nom} [mm]	F	G [mm]	T (mm)	X [mm]	Y [mm]	Weight [kg]
CESU45-120	3	120	25	37.25 ± 1.75	M8	12	43.8	55	32.5	0.45

Tab. 22

TEX - Stainless steel guides with shaped raceways

Rail type	Size	A [mm]	B [mm]	T [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	Holes for screws	Weight [kg/m]
	20	19.2	10.2	2	6.9	3	7	4.5	2.5	M4	0.47
	26	26.1	14	2.5	9.5	4.5	11	6	5	M5	0.80
TEX	30	29.5	15	2.5	10	4.5	11	6	5	M5	0.90
	40	39.5	20	3	13	6	13	9	4	M8	1.55
	45	46.4	24	4	15.5	6.5	11	9	2	M8	2.29
											Tab. 24

Rail type	Size	Min length [mm]	Max length [mm]	Standard length L [mm]
	20	160	3120	
	26	160	4000	160 - 240 - 320 - 400 - 480 - 560 - 640 - 720 - 800 - 880 - 960 - 1040 - 1120 - 1200 - 1280 -1360 - 1440 - 1520 - 1600 - 1680 - 1760 - 1840
TEX	30	30 160 4000	- 1920 - 2000 - 2080 - 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640	
	40	160	4000	- 2720 - 2800 - 2880 - 2960 - 3040 - 3120 - 3200 - 3280 - 3360 - 3440 - 3520 - 3600 - 3680 - 3760 - 3840 - 3920 - 4000
	45	320	4000	

Please specify hole pattern separately Special lengths or pitches available upon request, please contact the sales department The highlighted rail lengths are available from stock (3120 only for TEX 20)

CEX20 slider for rail TEX 20

CEX20-80 with compact body and wipers

CEX20-60 with solid body (wipers on request)

Fig. 32

Fig. 33

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F	G [mm]	S [mm]	T [mm]	Zn [mm]	X [mm]	Y [mm]	Weight [kg]
CEX20-80	2	80	86	18	15.9	71	M5	5.5	2.2	19.2	9	60	5.5	0.05
CEX20-60	3	60	-	10	17.8	-	M5	6	2.6	19.2	5	20	20	0.04
														Tab. 26

CEX26 slider for rail TEX 26

CEX26-80 with compact body (wipers not available)

Slider type	No. of rollers	A [mm]	C [mm]	D [mm]	F	G [mm]	S [mm]	T [mm]	X [mm]	Y [mm]	Zn [mm]	Weight [kg]
CEX26-80	3	80	25	22	M5	4	3.7	26.1	30	25	12.5	0.095
												Tab. 27

CEX30 slider for rail TEX 30

CEX30-88 with compact body and wipers

Fig. 35

CEX30-80 with solid body (wipers on request)

Fig. 36

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F	G [mm]	S [mm]	T [mm]	Z [mm]	Zn [mm]	X [mm]	Y [mm]	Weight [kg]
CEX30-88	2	88	95	27	20.5	80	M5	4.5	3.5	29.5	15	6	70	5	0.11
CEX30-80	3	80	-	20	26.5	-	M6	10	3.3	29.5	-	10	35	22.5	0.17
															Tab. 28

CEX40 slider for rail TEX 40

CEX40-135 with compact body (wipers on request)

Slider type	No. of rollers	A [mm]	C [mm]	D [mm]	F	G [mm]	S [mm]	T [mm]	X [mm]	Y [mm]	Z [mm]	Zn [mm]	Weight [kg]
CEX40-135	3	135	35	28.65	M6	6	5	39.5	120	7.5	23	6	0.450
													Tab. 29

CEX45 slider for rail TEX 45

CEX45-150 with compact body and wipers

CEX45-120 with solid body (wipers on request)

Slider type	No. of rollers	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F	G [mm]	S [mm]	T [mm]	Z [mm]	Zn [mm]	X [mm]	Y [mm]	Weight [kg]
CEX45-150	0	150	160	40	31	135	M6	4	5	46.4	23	8.5	120	7.5	0.40
CEX45-120	3	120	-	25	38	-	M8	12	5.7	46.4	-	12.5	55	32.5	0.47
															Tab. 30

UEX - Stainless steel guides with flat raceways

Rail type	Size	A [mm]	B [mm]	T [mm]	E [mm]	F [mm]	G [mm]	H [mm]	Holes for screws	Weight [kg/m]
	30	29.8	16	3	6	11	6	5	M5	1.39
UEX	40	38.5	21	3	6	13	9	4	M8	1.7
	45	43.8	24.5	4	9	11	9	2	M8	2.79
										Tab. 31

Rail type	Size	Min length [mm]	Max length [mm]	Standard length L [mm]
	30	160	4000	160 - 240 - 320 - 400 - 480 - 560 - 640 - 720 - 800 - 880 - 960 - 1040 - 1120 - 1200 - 1280 - 1360 - 1440 - 1520 - 1600 - 1680 - 1760 - 1840 - 1920 - 2000
UEX	40	160	4000	- 2080 - 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640 - 2720 - 2800 - 2880
	45	320	4000	- 2960 - 3040 - 3120 - 3200 - 3280 - 3360 - 3440 - 3520 - 3600 - 3680 - 3760 - 3840 - 3920 - 4000
Please specify hole pat	tern separately			Tab. 32

Please specify hole pattern separately Special lengths or pitches available upon request, please contact the sales department

The highlighted rail lengths are available from stock

CEXU30 slider for rail UEX 30

CEXU30-80 with solid body (wipers on request)

Slider type	No. of rollers	A [mm]	C [mm]	D _{nom} [mm]	F	G [mm]	T [mm]	X [mm]	Y [mm]	Weight [kg]
CEXU30-80	3	80	20	27.95 ± 0.6	M6	10	31.8	35	22.5	0.16

CEX40 slider for rail UEX 40

CEX40-135 with compact body (wipers on request)

Slider type	No. of rollers	A [mm]	C [mm]	D _{om} [mm]	F	G [mm]	T [mm]	Z [mm]	Zn [mm]	X [mm]	Y [mm]	Weight [kg]
CEX40-135	3	135	35	29.95 ±1.6	M6	6	38.5	23	8	120	7.5	0.45
												Tab. 34

CEXU45 slider for rail UEX 45

CEXU45-120 with solid body (wipers on request)

CEXU45-120 3 120 25 37.25 M8 12 44.8 55 32.5 0.45	Slider type	No. of rollers	A [mm]	C [mm]	D _{nom} [mm]	F	G [mm]	T [mm]	X [mm]	Y [mm]	Weight [kg]
	CEXU45-120	3	120	25	37.25 ± 1.75	M8	12	44.8	55	32.5	0.45

X R

Accessories

Rollers >

RLN / RLA

Roller	Туре	For rail	For slider	B [mm]	C [mm]	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	T [mm]	N Key	C _{0rad} [N]	Weight [Kg]
RLN26	Conc.	TEN 26 TES 26	CES 26-80	M5	6	20.2	-	5.5	8.2	8.5	0.3	4	560	0.013
RLA26 RLN40	Ecc. Conc.	TES 20 TEN 40					0.6					-		
RLA40	Ecc.	UEN 40 TES 40 UES 40	CEN 40 CES 40-135	M6	10	31.5	0.7	4.65	9.65	10	-	5	1200 (950*)	0.048
2Z (dust cover seal)		223 10												Tab. 36

2Z (dust cover seal) *If used in U-Rail.

RLNX / RLAX

Fig. 45

Roller	Туре	For rail	For slider	B [mm]	C [mm]	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	T [mm]	N Key	C _{0rad} [N]	Weight [Kg]
RLNX26	Conc.	TEX 26	CEX 26-80	M5	6	20.2	-	5.5	8.2	8.5	0.3	•	370	0.013
RLAX26	Ecc.						0.6					4		
RLNX40	Conc.	TEX 40	CEX 40-135	M6	10	31.5	-	4.65	9.65	10			735	0.048
RLAX40	Ecc.	UEX 40	0LX 40 100	IVIO	10	01.0	0.7	4.00	0.00	10		5	(590*)	0.040
2RS (splashproof sea	al)													Tab. 37

*If used in U-Rail.

CRPN / CRPA

i	n		Λ	ด
I	y	=	-	υ

Roller	Туре	For rail	For slider	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	S [mm]	T (mm)	Key*	C _{orad} [N]	Weight [kg]
CRPN20-2Z	Conc.	TES 20	CES 20-80	8	M4	4	14	-	4	6	8.2	6	0.2		163	0.006
CRPA20-2Z	Ecc.	TE3 20	GE3 20-00	0	1014	4	14	0.5	4	0	0.2	0	0.2	CK20	103	0.000
CRPN30-2Z	Conc.	TES 30	CES 30-88	12	M5	7	22.8	-	4.5	8	12	10	0.5		435	0.018
CRPA30-2Z	Ecc.	TEO 30	UE3 30-00	12	UND	1	22.0	0.8	4.0	0	12	10	0.5	CK30	430	0.010
CRPN45-2Z	Conc.	TEC 15	CES 15 150	16	M6	11	35.6	-	6	11.5	17.3	13	0.3		870	0.068
CRPA45-2Z	Ecc.	TE3 40	CES 45-150	16	IVIO	11	55.0	0.8	0	11.5	17.5	13	0.3	CK28	070	0.000
2Z (dust cover seal)																Tab. 38

* The key must be ordered separately.

CRPNX / CRPAX

Roller	Туре	For rail	For slider	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	S [mm]	T [mm]	Key*	C _{orad} [N]	Weight [kg]
CRPNX20-2RS	Conc.	TEV 20	CEX 20-80	8	M4	4	14	-	4	6	8.2	6	0.2		150	0.006
CRPAX20-2RS	Ecc.	TEA 20	ULA 20-00	0	1014	4	14	0.5	4	0	0.2	0	0.2	CK20	150	0.000
CRPNX30-2RS	Conc.	TEV 20	CEX 30-88	12	M5	7	22.8	-	4.5	8	12	10	0.5		400	0.02
CRPAX30-2RS	Ecc.	TEA 30	GEA 30-00	12	UND	1	22.0	0.8	4.0	0	12	10	0.5	CK30	400	0.02
CRPNX45-2RS	Conc.	TEV 15	CEV 45 150	16	MG	11	25.6	-	6	11.5	17.3	13	0.3		800	0.068
CRPAX45-2RS	Ecc.	TEA 40	TEX 45 CEX 45-150	16	M6	11	35.6	0.8	0	11.5	17.5	13	0.3	CK28	000	0.000
2RS (splashproof seal)																Tab. 39

* The key must be ordered separately.

CRN / CRA

E	i	n	Δ	Q
	I	ч	-	U.

Roller	Туре	For rail	For slider	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	R (mm)	S [mm]	T [mm]	Key*	C _{0rad} [N]	Weight [kg]
CRN20-2Z	Conc.	TES 20	CES 20-60	6	M4	4	14	-	2.9	6.7	6	1.8	8	0.25		163	0.006
CRA20-2Z	Ecc.	110 20	OL3 20-00	0	1014	4	14	0.5	2.9	0.7	0	1.0	0	0.20	CK18	103	0.000
CRN30-2Z	Conc.	TES 30	CES 30-80	10	M5	7	22.8	-	3	10.3	7	3.8	13	0.7		435	0.002
CRA30-2Z	Ecc.	120 00	0L0 30-00	10	WI0	'	22.0	0.6	5	10.0	'	0.0	15	0.7	CK28	400	0.002
CRN45-2Z	Conc.	TEC 15	CES 15 120	12	M6	11	35.6	-	5	15	14.5	4.5	15	1		870	0.068
CRA45-2Z	Ecc.	110 40	CES 45-120	12	MO		55.0	0.8	5	15	14.5	4.5	15	1	CK43	070	0.000
2Z (dust cover sea	l)																Tab. 40

2Z (dust cover seal) * The key must be ordered separately.

CRNX / CRAX

Roller	Туре	For rail	For slider	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	R [mm]	S [mm]	T [mm]	Key*	C _{orad} [N]	Weight [kg]
CRNX20-2RS	Conc.		CEX 20-60	6	N4.4	4	14	-	2.9	67	G	10	8	0.25		150	0.006
CRAX20-2RS	Ecc.	IEA 20	GEA 20-00	0	M4	4	14	0.4	2.9	6.7	6	1.8	0	0.25	CK18	100	0.000
CRNX30-2RS	Conc.	TEV 20		10	ME	7	22.8	-	0	10.2	7	2.0	10	0.7		400	0.022
CRAX30-2RS	Ecc.	TEX 30	CEX 30-80	10	M5	1	22.8	0.6	3	10.3	1	3.8	13	0.7	CK28	400	0.022
CRNX45-2RS	Conc.		CEV 45 120	12	M6	11	35.6	-	5	15	14.5	4.5	15	4		800	0.07
CRAX45-2RS	Ecc.	TEA 40	CEX 45-120	12	IVIO	11	50.0	0.8	5	10	14.0	4.0	10	1	CK43	000	0.07

2RS (splashproof seal) * The key must be ordered separately.

CPN / CPA

Roller	Туре	For rail	For slider	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	R [mm]	S [mm]	T (mm)	Key*	C _{0rad} [N]	Weight [kg]
CPN30-2Z CPA30-2Z	Conc. Ecc.	UES 30	CESU 30-80	10	M5	7	23.2	- 0.6	2.2	9.5	7	3.8	13	0.7	L CK28	435	0.018
CPN45-2Z CPA45-2Z	Conc. Ecc.	UES 45	CESU 45-120	12	M6	11	35	- 0.8	2.5	12.5	12	4.5	15	0.9	L CK43	870	0.06
2Z (dust cover seal) Tal													Tab. 42				

2Z (dust cover seal) * The key must be ordered separately.

CPNX / CPAX

Roller	Туре	For rail	For slider	A [mm]	B [mm]	C (mm)	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	R [mm]	S [mm]	T (mm)	Key*	C _{orad} [N]	Weight [kg]
CPNX30-2RS	Conc.	UEX 30	CEXU	10	M5	7	23.2	-	2.2	9.5	7	3.8	13	0.7		400	0.018
CPAX30-2RS	Ecc.	ULX OU	30-80	10	IVIO	'	20.2	0.6	2.2	5.0	'	0.0	10	0.7	CK28	-00	0.010
CPNX45-2RS	Conc.	UEX 45	CEXU	12	M6	11	35	-	2.5	12.5	12	4.5	15	0.9		800	0.06
CPAX45-2RS	Ecc.	UEA 40	45-120	12	IVIO	11	30	0.8	2.0	12.0	12	4.0	10	0.9	CK43	800	0.00
2RS (splashproof seal)																	Tab. 43

* The key must be ordered separately.

X R

CPN...Z / CPA...Z

119.02

Roller	Туре	For rail	For slider	B [mm]	C [mm]	D [mm]	E [mm]	G [mm]	M [mm]	P [mm]	S [mm]	T [mm]	Ke	у*	C _{orad} [N]	Weight [kg]
CPN30Z-55	Conc.	TEP 30		ME	7	23.2	-	2.5	G	6.0	10	0.2			600	0.020
CPA30Z-55	Ecc.	UEP 30		M5	1	23.2	0.6	2.5	6	6.8	10	0.3	CK30	4	000	0.020
2RS (splashproof se																Tab. 44

* The CK30 key must be ordered separately.

Wipers

Fixing screws

We recommend fixing screws according to ISO 7380 with low head height or TORX $^{\odot}$ screws (see fig. 54) on request.

Rail size Screw type d D S Tightening torque L Κ [mm] [mm] [Nm] [mm] 2 3 20 M4 x 8 M4 x 0.7 8 8 T20 M5 x 0.8 2 26 M5 x 10 10 10 T25 9 M5 x 0.8 2 9 30 M5 x 10 10 10 T25 M8 x 16 M8 x 1.25 3 T40 20 40 16 16 M8 x 16 3 T40 22 45 M8 x 1.25 16 16

For wipers indicated as "on request" from pag. XR-10 to XR-19 please contact our Technical Department.

Slider type	Ordering code (for a pair of wipers)
CEN26	ZK-WCEN26
СЕРЗО	ZK-WCEP30
CEN40	ZK-WCEN40
CES20-80 - CEX20-80	ZK-WCES20
CES30-88 - CEX30-88	ZK-WCES30
CES45-150 - CEX45-150	ZK-WCES45
	Tah 45

Technical instructions /

Lubrication

All sliders CEN/CEP are supplied with high quality thermoplastic elastomer wipers with optimized lips and a synthetic felt soaked in lubricating oil, which releases a thin lubricating film on the raceways and ensures proper operation. The period of self-lubrication depends on the conditions of use and the level of environmental cleanliness. In normal conditions, the self-lubricating wipers can last up to 1000 km, then they need to be replaced with a new pair. New wipers can be ordered from Rollon using the codes shown on pag. XR-24. To replace them, simply extract the old ones and insert the new ones frontally. The rollers are lubricated for life with grease lithium soaps and feature 2Z lateral seals.

Other sliders can be supplied with wipers in high quality thermoplastic elastomer, without lubricating felt. Please check the availabilities from pag. XR-10 to XR-19, and contact our Technical Department for wipers indicated as "on request". In this case it is advisable to lubricate the raceways with specific bearing grease. The interval between lubrication treatments depends mainly on environmental conditions, bearing speed and temperature. Under normal conditions, it is advisable to lubricate locally after 100 km of use or after six months of service. In case of critical applications, lubrication treatments should be more frequent. Before lubricating, remember to clean the raceway surfaces carefully. We advise using a lithium grease of medium consistency for rolling-element bearings. The rollers are lubricated for life with grease lithium soaps and feature 2RS or 2Z lateral seals.

Different lubricants are available on request for special applications:

- FDA-approved lubricant for use in the food industry
- specific lubricant for clean rooms
- specific lubricant for the marine technology sector
- specific lubricant for high and low temperatures

For specific information, contact Rollon technical support.

Under normal conditions, correct lubrication:

- reduces friction
- reduces wear
- reduces stress on contact surfaces due to elastic deformation
- reduces noise during operation
- increases the regularity of the rolling movement

Fig. 55

χ

R

Fig. 56

T+U-System

Solves axial deviations in parallelism

Mounting two linear bearing rails in a parallel manner is always important but rarely easy. Distortions in axial alignment can drastically reduce the life of the rails. These distortions can bind and overload sliders. Combining shaped and flat raceways it is possible to compensate axial deviation in parallelism of the mounting surfaces without additional modifications of those surfaces. T+U rails easily address these alignment issues to create an economical parallel rail system.

In a T+U-System, the slider in the T rail carries axial and radial loads and guides the movement of the U, which has lateral freedom.

U rails have flat parallel raceways that allow free lateral movement of the sliders. The maximum freedom a slider in the U rail can offer can be calculated using the values S_1 and S_2 (see fig. 58, tab. 47 and the formula in fig. 59). With nominal value B_{nom} as the starting point, S_1 indicates the maximum allowed movement into the rail, while S_2 represents the maximum offset towards the outside of the rail.

If the length of the guide rail is known, the maximum allowable angle deviation of the mounting surface (fig. 60 and tab. 48) can be calculated. In this case the slider in the U rail has the freedom to travel from the innermost position S_1 to the outermost position S_2 .

Maximum offset

Fig. 58

Slider type	S ₁ [mm]	S ₂ [mm]	B _{min} [mm]	B _{nom} [mm]	B _{max} [mm]
CESU30 / CEXU30	0.6	0.6	27.35	27.95	28.55
CEP30	0.6	0.6	20.5	21.1	21.7
CEN40 / CES40 / CEX40	1.6	1.6	28.35	29.95	31.55
CESU45 / CEXU45	1.75	1.75	35.50	37.25	39
					Tab. 47

Guideline for the maximum angle deviation $\boldsymbol{\alpha},\;$ achievable with the longest guide rail

$$\alpha = \arctan \frac{S^{\star}}{L} \qquad \qquad S^{\star} = \text{sum of } S_{1} \text{ and } S_{2}$$

$$L = \text{length of the rail}$$

Fig. 59

Size	Rail length [mm]	Offset S* [mm]	Angle α [°]
30	4000	2	0.028
40	4000	3.4	0.048
45	4000	3.5	0.050
			Tab. 48

X R

Service life calculation for N/P-series

The calculation of service life can be done only for rails with nitrided raceways, for which the dynamic load capacity C is given. The dynamic load capacity C is a conventional variable that corresponds to a nominal service life of 100 km. For values of the individual slider see pg. XR-5. The following formula (see fig. 61) links the calculated theoretical service life to the dynamic load capacity and the equivalent load:

$$L_{Km} = 100 \text{km} \cdot \left(\frac{C}{P} \cdot \frac{f_c}{f} \cdot f_h\right)^2$$

 L_{km} = theoretical service life (km)

- C = dynamic load capacity (N)
- P = effective equivalent load (N)
- $f_c = contact factor$
- f_i = application coefficient
- $f_h = stroke factor$

Fig. 61

The equivalent load P corresponds in its effects to the sum of the forces working simultaneously on a slider. If these different load components are known, P results as follows:

$$\mathsf{P} = \mathsf{P}_{\mathsf{r}} + (\frac{\mathsf{P}_{\mathsf{a}}}{\mathsf{C}_{\mathsf{0ax}}}) \cdot \mathsf{C}_{\mathsf{0rad}}$$

Fig. 62

Here the external loads are assumed as constant in time. Brief loads, which do not exceed the maximum load capacities, do not have any relevant effect on the service life and can therefore be neglected.

The contact factor f_c refers to applications in which several sliders pass the same rail section. If two or more sliders move over the same point of a rail, the contact factor according to table 49 to be taken into account in the formula for calculation of the service life.

Number of sliders	1	2	3	4
f _c	1	0.8	0.7	0.63
				Tah 49

The application coefficient f_i takes into account the operational conditions in the service life calculation. It is calculated as described in the following table:

f,	
Neither shocks nor vibrations, smooth and low-frequency direction change; clean operating conditions; low speeds (<1 m/s)	1 - 1.5
Slight vibrations, average speeds (1 - 1.5 m/s) and average frequency of direction change	1.5 - 2
Shocks and vibrations, high speeds (> 1.5 m/s) and high-frequency direction change; extreme dirt contamination	2 - 3.5

Tab. 50

X R

The stroke factor f_n takes into account the higher load of the raceways and rollers during short strokes on the same total length of run. The corresponding values are taken from the following graph (for strokes longer than 1 m, $f_n = 1$):

Static load

The radial load capacity rating, C_{0rad} the axial load capacity rating C_{0ax} , indicate the maximum permissible values of the load (see pg. XR-5), higher loads will have a detrimental effect on the running quality. A safety factor, S_{0} , is used to check the static load, which takes into account the basic parameters of the application and is defined more in detail in the following table:

Safety factor S_o

No shock nor vibration, smooth and low-frequency reverse, high assembly accuracy, no elastic deformations	1 - 1.5
Normal installation conditions	1.5 - 2
Shock and vibration, high-frequency reverse, significant elastic deformation	2 - 3.5
	Fig. 64

The ratio of the actual load to maximum permissible load may be as large as the reciprocal of the accepted safety factor, S_0 , at the most.

$$\frac{P_{0rad}}{C_{0rad}} \le \frac{1}{S_0} \qquad \frac{P_{0ax}}{C_{0ax}} \le \frac{1}{S_0}$$
Fig. 65

The above formulas are valid for a single load case.

If two or more forces are acting simultaneously, please check the following formula:

The safety factor S_0 can lie on the lower given limit if the occurring forces can be determined with sufficient precision. If shock and vibration are present, the higher value should be selected. For dynamic applications higher safety is required. Please contact Rollon technical support.

Adjusting the slider

If requested in the order, rails and sliders are delivered as a system with factory adjustment. If rails and sliders are supplied separately or if the slider is to be mounted in another rail, the bearings will need to be adjusted. The suitable approach is the hexagonal spanner for sliders size 26, 40 and the flat spanner for sliders size 20,30,45. CEP30 slider can be adjusted in both ways.

Common preliminary operations:

(1) Check that the raceways are clean and remove the wipers, to increase sensitivity for proper preload.

(2) Place the slider in the rail. It may be necessary to align the bearings to be adjusted with the fixed ones to facilitate insertion, since excessive offset may make insertion difficult. Use a flat or hexagonal spanner.

(3) Use a medium threadlocking adhesive in the screws.

(4) Lightly tighten the upper bearing screw without over-tightening. Vice versa if the screw has already been previously tightened, loosen it slightly. The bearing must be able to rotate but should not be completely free. Only adjust the excentric bearings (without the center marked).

With flat spanner

(5) For the U-rails there must be a thin support (e.g. set key) under the ends of the slider body to ensure the horizontal alignment of the slider in the flat raceways.

(6) The adjustment can take place at any point on the rail. If possible, position the slider at one end of the rail to simplify insertion of the flat spanner.(7) Insert the flat spanner supplied to the side and use it to engage the

hexagonal or square shaft of the eccentric pin to be adjusted (see fig. 67).

(8) Turn the flat adjustment spanner clockwise so that the excentric bearing contacts the raceway opposite the factory-set fixed bearings, thus reducing the slider clearance to zero. Avoid applying a too high preload, which would cause high wear and reduce service life.

(9) While holding the pin in the correct position with the flat adjustment spanner, tighten the fixing screw to ensure that the pin is locked in position. (10) Run the slider and check the preload over the entire length of the rail. The movement must be smooth. If any oscillation/clearance or excessive force is observed, repeat the adjustment operation. Preload is optimized when the slider runs smoothly and without play.

(11) Preload values can be checked by slowly inserting the slider at the end of the rails. The insertion force is proportional to the preload. Preload is optimized when the slider runs smoothly and without play.

(12) For sliders with more than 3 bearings, repeat this procedure for each one to be adjusted. Ensure that all bearings have uniform contact with the raceways.

(13) While maintaining the angular position of the pin with the flat spanner, tighten the adjusted bearing fixing screw with a torque spanner. The prescribed tightening torque is shown in table 51.

(14) Reinstall the wipers.

With hexagonal spanner

(5) Lock the rail on a stable support so that your hands are free.(6) Insert the hexagonal spanner into the excentric pin, passing it

through one of the fixing holes in the rail. (7) Turn the hexagonal key slightly so that the excentric bearings contacts the raceway opposite the factory-set fixed bearings, thus reducing the slider clearance to zero. When turning, support the upper screw by turning in the same direction with a second hexagonal spanner to prevent loosening or changes in preload settings.

(8) While firmly holding the hexagonal spanner inserted in the excentric bearing with one hand, use the other hexagonal spanner to turn and tighten the upper screw of the pin. Do not lock or unlock the excentric bearing by rotating the pin: always turn the top screw.

(9) Run the slider and check the preload over the entire length of the rail.

The movement must be smooth. If any oscillation/clearance or excessive force is observed, repeat the adjustment operation. Preload is optimized when the slider runs smoothly and without play.

(10) Preload values can be checked by slowly inserting the slider at the end of the rails. The insertion force is proportional to the preload. Preload is optimized when the slider runs smoothly and without play.(11) For sliders with more than 3 bearings, repeat this procedure for each one to be adjusted. Ensure that all bearings have uniform contact with the raceways.

(11) Tighten the pin/screw definitively using a torque spanner to ensure the correct tightening torque, in accordance with the values in table 51, while holding the hexagonal spanner to the pin, to avoid variations in the preload parameters. Always turn the top screw to lock or loosen the bearing.

(12) Reinstall the wipers.

Fig. 68

Size	Tightening torque [Nm]
20	3
26	7
30	7
40	10
45	12
	Tab. 51

Use of rollers

Slider size	X [mm]	Ø A [mm]	B min. [mm]	Radius R [mm]
20	0.60	6 +0.01/+0.03	2.1	0.5
26	0.40	-	-	-
30 (CES/CEX)	0.63	10 +0.01/+0.03	4.1	0.5
30 (CEP)	0.40	-	-	-
40	0.90	-	-	-
45	0.60	12 +0.01/+0.03	5	1
				Tab. 52

If purchasing "Radial ball bearing rollers" to install on your own structure (see from p. XR-20 to XR-24) we advise:

- Using a maximum of 2 concentric rollers
- Offset the seats of the concentric rollers with respect to those of the eccentric rollers according to the table (tab. 52).
- To install rollers type CPN/CPA, CPNX/CPAX, CRN/CRA, CRNX/CRAX it is necessary to make a slot in the structure according to the dimensions shown on Fig. 69.
- Two concentric and two eccentric rollers are recommended for the fourroller slider. The two concentric rollers must be engaging on the lower raceway of the rail.

Maintain the recommended offset distance between the midpoint line of the concentric rollers and those of the eccentric rollers (fig. 70).

Two concentric rollers are recommended for the slider with five or more rollers (fig.71). The two concentric rollers must be engaging on the lower raceway of the rail. The other rollers must all be eccentric and engaging on the upper or lower raceway of depending on the application. Maintain the recommended offset distance between the midpoint line of the concentric rollers and those of the eccentric rollers.

In the case of configuration with more than five rollers, only eccentric pins should be adjusted. In this case, all eccentric rollers will be aligned and equally offset from the midpoint line of the concentric rollers.

Anticorrosion treatments

TEN, TEP, UEN, UEP guides

Treatment	Characteristics
Rollon-Nox	Patented high depth nitride hardening and black oxidation treatment that provides good durability under high loads or frequencies and good corrosion resistance. It is standard for all sizes.
Rollon E-coating (K)	As Rollon-Nox version with additional electro painting that provides a fine black finishing to the entire rail. It can be partially removed from the raceways on the running contact point of the rollers after a period of use. Rails with Rollon E-Coating are supplied with stainless steel rollers to further increase the corrosion resistance.

Tab. 53

X R

TES, UES guides

Treatment	Characteristics
Zinc Plating ISO 2081	Standard plating on TES, UES rails and sliders. Ideal for indoor applications. Zinc plated sliders are supplied with steel rollers.
Rollon E-coating (K)	As zinc-plated ISO 2081 version with additional electro painting that provides a fine black finishing to the entire rail. It can be partially removed from the raceways on the running contact point of the rollers after a period of use. Rails with Rollon E-Coating are supplied with stainless steel rollers to further increase the corrosion resistance.

Tab. 54

TEX, UEX guides As standard, rails are made of in AISI316L with rollers in hardened AISI440.

Treatment	Characteristics
Electro-polish (X)	Rails are completely electro-polished for further improved corrosion resistance. The electro-polishing treatment also gives the product a very shiny surface.

≥ Rail / slider system

TEX-	960	/1/	CEX20-60	-2RS	X	
					Surface treatments (if different from standard) see pg XR-33	
				Roller seal	see pg. XR-4 Performance characteristics	
			Slider type	see pg. X	KR-7, XR-9, XR-11 and 12, XR-14, XR-16 and 17, XR-19	
		Number of s	Number of sliders in one rail			
	Rail length i	n mm se	e pg. XR-6, X	R-8, XR-10, X	XR-13, XR-15, XR-18	
Rail type	see pg. XR-6, XR-8, XR-10, XR-13, XR-15, XR-18					
Ordering example: TEX-00960/1/CEX20-060-2RS						

Hole pitch: 40-11x80-40

Notes on ordering: The rail length codes are always 5 digits, the slider length codes are always 3 digits; use zeroes as a prefix when lengths are shorter

Rail

TEX-	30-	960	Х	
			Surface trea	tments (if different from standard) see pg XR-33
		Rail length i	n mm se	e pg. XR-6, XR-8, XR-10, XR-13, XR-15, XR-18
	Size se	e pg. XR-6, X	R-8, XR-10, X	/R-13, XR-15, XR-18
Rail type	see pg. XR-6, XR-8, XR-10, XR-13, XR-15, XR-18			

Ordering example: TEX-30-00960

Hole pattern: 40-11 x 80-40

Notes on ordering: The rail length codes are always 5 digits; use zeroes as a prefix when lengths are shorter

Slider

CES30-80	-2Z	К		
		Surface treatments (if different from standard) see pg XR-33		
	Roller seal	see pg. XR-4 Performance characteristics		
Slider type	see pg. XR-7, XR-9, XR-11 and 12, XR-14, XR-16 and 17, XR-19			
0 I I	1 05000			

Ordering example: CES30-080-2Z

Notes on ordering: The slider length codes are always 3 digits; use zeroes as a prefix when lengths are shorter

Accessories

Roller pins

CRPAX	45	-2RS	
		Roller seal	see pg. XR-20 to XR-24
	Size se	e pg. XR-20 to	o XR-24
Roller type	see pg. X	R-20 to XR-24	4

Ordering example: CRPAX45-2RS

СК	30	
	Size	see pg. XR-20 to XR-24

Fixing screws

	Ordering description
26	TORX [®] screw TC 28 M5x10
30	TORX [®] screw TC 28 M5x10
40	TORX [®] screw TC 43 M8x16
20	TORX [®] screw TC 18 M4x8
26	TORX® screw TC 28 M5x10
30	TORX [®] screw TC 28 M5x10
40	TORX® screw TC 43 M8x16
45	TORX [®] screw TC 43 M8x16
26	TORX [®] screw TC 28 M5x10 NIC
30	TORX [®] screw TC 28 M5x10 NIC
40	TORX® screw TC 43 M8x16 NIC
45	TORX® screw TC 43 M8x16 NIC
	30 40 20 26 30 40 25 30 40 40 40 30 40 40 40 40 40 45 26 30 40

see pg. XR-24, fig. 54, tab. 46

Product explanation $\parallel \checkmark$

Easyslide is a linear ball rail system (with caged ball bearings for the SN series or with recirculating ball bearings for the SNK series) with single or multiple sliders.

The Easyslide series is a system of drawn steel linear rails with induction hardened raceways. The system consists of an "C" shaped linear profile rail, and one or more internal sliders with caged recirculating ball bearings.

The most important characteristics:

- Guide rails and sliders of SN series are made of cold-drawn bearing steel
- Ball cage is made of steel for the SN series
- Balls are made of hardened bearing steel
- Raceways of the guide rails and sliders are induction hardened (ground for the SNK series)
- Long service life
- With recirculating ball bearings for the SNK series

Preferred areas of application of the Easyslide product family:

- Transportation industry (e.g., exterior and interior rail and bus doors, seat adjustments, interior)
- Construction and machine technology
 - (e.g., housings, protective covers)
- Medical technology (e.g., X-ray equipment, medical tables)
- Automotive technology
- Logistics (e.g., handling units)
- Packaging machines (e.g., beverage industry)
- Special machines

SN linear bearing, version 1, with single slider

This linear bearing consists of a guide rail and a slider that runs within the ball cage in the guide rail. High load capacities, compact cross-sections and simple and easy mounting characterize this series.

SN linear bearing, version 2, with multiple independent sliders

Variant with several sliders, which each runs in its own ball cage, independent of each other, in the guide rail. Slider length and stroke for each slider can be different within one rail.

SN linear bearing, version 3, with multiple synchronized sliders

Several sliders run in a common ball cage within the guide rails. The slider lengths can vary here as well and then form a total unit, which implements the corresponding stroke.

SNK series linear rails with recirculating ball bearings.

The SNK series consists of a drawn steel C profile rail with hardened and ground raceways and of an internal slider with a recirculating ball bearing system. This product is extremely compact and boasts high load rating and great sliding properties.

Ε

S

Fig. 2

Technical data 🛛 🗸

Performance characteristics:

- Available sizes for SN: 22, 28, 35, 43, 63
- Sections available for the SNK series: 43
- Inductive raceways hardened and ground for the SNK series
- Rails and sliders are made of cold-drawn bearing steel
- Balls are made of hardened bearing steel
- Max. operating speed 1.5 m/s (SNK)
- Temperature range: from -20 °C to +170 °C for the SN series from -20° to 70° for the SNK series
- Electrolytic zinc-plating as per ISO 2081; increased anticorrosive protection on request (see Chapter 4, Technical instructions, pg. 16 Anticorrosive protection)
- Linear accuracy 0.1 mm/m stroke
- 2 different types of preload

Remarks:

- SN can only be horizontally mounted, high performance SNK can be horizontally and vertically mounted.
- External stops are recommended
- Fixing screws of property class 10.9 must be used for all linear bearings

Dimensions and load capacity $// \sim$

SN

SN linear bearing, version 1, with single slider

To ensure that all fixing holes of the rail are accessible, S must be < L/2 - K. To ensure proper smooth movement it is necessary that H \leq 7S.

Туре	Size	Slider										
1900	0120							Load capacities and moments				
		Length S [mm]	a [mm]	b [mm]	No. of holes	C _{0rad} [N]	C _{0ax} [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]		
		40	10 25	20	2	1320	924	4.4	6	9		
		60			3	1980	1386	6.7	14	20		
SN	22	80			4	2640	1848	8.9	25	35		
SN	22	130			2	4290	3003	14.4	65	93		
		210		80	3	6930	4851	23.3	170	243		
		290			4	9570	6699	32.2	324	463		

-		١.,	-4
- 1	я	n	
	~	~	

E S

		Rail	
Туре	Size	Length L [mm]	K [mm]
SN	22	130 - 210 - 290 - 370 - 450 - 530 - 610 - 690 - 770 - 850 - 930 - 1010 - 1090 - 1170	30
			Tab. 2

Туре	Sizo	Size								
турс	0126					Load capacities and moments				
		Length S [mm]	a [mm]	b [mm]	No. of holes	C _{orad} [N]	C _{0ax} [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
		60	10	20	3	3480	2436	17.1	24	35
		80	10		4	4640	3248	22.7	43	62
		130			2	7540	5278	36.9	114	163
SN	28	210			3	12180	8526	59.7	298	426
		290	25	80	4	16820	11774	82.4	569	813
		370			5	21460	15022	105.1	926	1323
		450			6	26100	18270	127.9	1370	1958
										Tab. 3

		Rail	
Туре	Size	Length L [mm]	K [mm]
SN	28	130 - 210 - 290 - 370 - 450 - 530 - 610 - 690 - 770 - 850 - 930 - 1010 - 1090 - 1170 - 1250 - 1330 - 1410 - 1490 - 1570 -1650	40
			Tab. 4

Туре	Size		Slider								
1360	0120						Load capa	acities and	moments		
		Length S [mm]	a [mm]	b [mm]	No. of holes	C _{0rad} [N]	C _{0ax} [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
		130		80	2	9750	6825	47.2	148	211	
		210			3	15750	11025	76.3	386	551	
		290					4	21750	15225	105.3	736
SN	35	370	25		5	27750	19425	134.4	1198	1711	
		450			6	33750	23625	163.4	1772	2531	
		530			7	39750	27825	192.5	2458	3511	
		610			8	45750	32025	221.6	3256	4651	

Tab. 5

		Rail	
Туре	Size	Length L [mm]	K [mm]
SN	35	290 - 370 - 450 - 530 - 610 - 690 - 770 - 850 - 930 - 1010 - 1090 - 1170 - 1250 - 1330 - 1410 - 1490 - 1570 - 1650 - 1730 - 1810	50
			Tab. 6

Туре	Size	Slider															
турс	0120				Load capacities and momen												
		Length S [mm]	a [mm]	b [mm]	No. of holes	C _{0rad} [N]	C _{0ax} [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]							
		130			2	13910	9737	96	211	301							
		210		80	3	22470	15729	155.1	551	786							
		290			25 80								4	31030	21721	214.1	1050
SN	43	370	25			5	39590	27713	273.2	1709	2441						
		450			6	48150	33705	332.3	2528	3611							
		530			7	56710	39697	391.4	3507	5009							
		610			8	65270	45689	450.4	4645	6636							
										Tab. 7							

		Rail	
Туре	Size	Length L [mm]	K [mm]
SN	43	290 - 370 - 450 - 530 - 610 - 690 - 770 - 850 - 930 - 1010 - 1090 - 1170 - 1250 -1330 - 1410 - 1490 - 1570 - 1650 - 1730 - 1810 - 1890 - 1970	50
			Tab. 8

Size	Slider											
0120			Load capacities and moments									
	Length S [mm]	a [mm]	b [mm]	No. of holes	C _{0rad} [N]	C _{oax} [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]			
	130			2	26000	18200	238.8	394	563			
	210			3	42000	29400	385.8	1029	1470			
	290	25			80	80	80	4	58000	40600	532.8	1962
63	370		25	25				80	80	5	74000	51800
	450				6	90000	63000	826.7	4725	6750		
	530				7	106000	74200	973.7	6554	9363		
	610			8	122000	85400	1120.7	8682	12403			
	Size 63	Length S [mm] 130 210 290 63 370 450 530	Length S [mm] a [mm] 130 210 210 290 63 370 25 450 530 25	Length S [mm] a [mm] b [mm] 130 130 130 210 290 80 63 370 25 450 530 100	Size Image: Size Image: Size Size <thsize< th=""> Size Size<th>Size Image: Size <thimage: size<="" th=""> <thim< th=""><th>Size Image: Size <thimage: size<="" th=""> <thim< th=""><th>SizeImage: Size Size Size Size Size Size Size Size</th><th>SizeLoad capacities and momentsLength S [mm]a [mm]b [mm]No. of holesC $0md$C $0md$My [N]My [Nm]My [Nm]130130922600018200238.839421013091301029385.8102929002900258057400051800630.8196263370258057400051800679.8319445053009000063000826.747255307400074200973.76554</th></thim<></thimage:></th></thim<></thimage:></th></thsize<>	Size Image: Size <thimage: size<="" th=""> <thim< th=""><th>Size Image: Size <thimage: size<="" th=""> <thim< th=""><th>SizeImage: Size Size Size Size Size Size Size Size</th><th>SizeLoad capacities and momentsLength S [mm]a [mm]b [mm]No. of holesC $0md$C $0md$My [N]My [Nm]My [Nm]130130922600018200238.839421013091301029385.8102929002900258057400051800630.8196263370258057400051800679.8319445053009000063000826.747255307400074200973.76554</th></thim<></thimage:></th></thim<></thimage:>	Size Image: Size <thimage: size<="" th=""> <thim< th=""><th>SizeImage: Size Size Size Size Size Size Size Size</th><th>SizeLoad capacities and momentsLength S [mm]a [mm]b [mm]No. of holesC $0md$C $0md$My [N]My [Nm]My [Nm]130130922600018200238.839421013091301029385.8102929002900258057400051800630.8196263370258057400051800679.8319445053009000063000826.747255307400074200973.76554</th></thim<></thimage:>	SizeImage: Size Size Size Size Size Size Size Size	SizeLoad capacities and momentsLength S [mm]a [mm]b [mm]No. of holesC $0md$ C $0md$ My [N]My [Nm]My [Nm]130130922600018200238.839421013091301029385.8102929002900258057400051800630.8196263370258057400051800679.8319445053009000063000826.747255307400074200973.76554			

Tab. 9

E S

		Rail						
Туре	Size	Length L [mm]	K* [mm]					
SN	63	610 - 690 - 770 - 850 - 930 - 1010 - 1090 - 1170 - 1250 - 1330 - 1410 - 1490 - 1570 - 1650 - 1730 - 1810 - 1890 - 1970	80					
* For systems of versions 2 i	For systems of versions 2 in size 63 with two independent sliders, the K dimension changes from Tab. 10							

 * For systems of versions 2 in size 63 with two independent sliders, the K dimension changes from 80 mm to 110 mm and for each additional slider by another 30 mm

Version 2 with multiple independent sliders

Version 2 is a variant of version 1 with several independent sliders. The total load capacity is based on the number of sliders in the rail and on their lengths. The length and stroke of the individual sliders can be different.

To ensure that all fixing holes of the rail are accessible, S must be < L/2 - K.

To ensure proper smooth movement it is necessary that $H \le 7S$.

Version 3 with multiple synchronized sliders

Version 3 is a variant of version 1 with several synchronized sliders. The total load capacity is based on the number of sliders in the rail. The length of the individual sliders can therefore vary. To ensure that all fixing holes of the rail are accessible, S must be < L/2 - K.

To ensure proper smooth movement it is necessary that $H \le 7S$.

SN

¹ Fixing holes (V) for countersunk head screws according to DIN 7991
 ² Fixing holes (C) for socket cap screws according to DIN 7984. Alternative fixing with Torx[®] screws in special design with low head (on request)

Туре	Size	Cross-section							Rail	Slider			
		A [mm]	B [mm]	l [mm]	J [mm]	G [mm]	E ₁ [mm]	E₂ [°]	V	C	F	weight [kg/m]	weight [kg/m]
	22	11	22	10.25	11.3	6.5	3	-	M4	-	M4	0.7	1
	28	13	28	12.25	15	7.5	1	-	M5	-	M5	1	1.5
SN	35	17	35	16	15.8	10	2	-	M6	-	M6	1.8	2.5
	43	22	43	21	23	13.5	2.5	-	M8	-	M8	2.6	5
	63	29	63	28	29.3	10.5	-	2 x 45	-	M8	M8	6.1	6.9
													Tab. 11

Fig. 10

E S

SNK

Туре	Size	Slider									
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CILO		Load capacities and moments								
		Length S [mm]	Length T [mm]	A [mm]	B [mm]	N° of holes	C _{orad} [N]	C _{0ax} [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
SNK	43	110	198	15	80	4	7842	5489	75	95	136
JINK	43	150	238	15	60	6	10858	7600	105	182	261

Tab. 12

		Rail					
Туре	Size	Length L [mm]					
TSC/TSV	43	320-400-480-560-640-720-800-880-960-1040-1120-1200 -1280-1360-1440-1520-1600-1680-1760-1840-1920-2000					

For greater lengths, see the paragraph "SNK Jointed Rails on p. ES-18"
E S

SNK

Туре	Size	Cr	ross-section		Rail	Slider	Slider
		A [mm]	B [mm]	C [mm]	weight [kg/m]	weight 110 [g]	weight 150 [g]
TSC/TSV	43	43	21	22	2,6	360	550
							Tab. 14

Static load

The maximum static loads of the Easyslide series are based on the slider length and are listed in the tables of the previous pages. These load capacities are valid for a loading point of forces and moments in the center of the slider (for off-center loading, see ES-13). The load capacities are independent of the position of the slider inside the rails. During the static tests the radial load capacity, C_{orad} , the axial load capacity, C_{oax} , and

moments M_x , M_y and M_z indicate the maximum permissible values of the loads. Higher loads negatively affect the running properties and the total mechanical strength may be compromised. A safety factor, S_0 , is used to verify the static load, which takes into account the basic parameters of the application and is defined in more detail in the following table:

Safety factor S₀

Neither shocks nor vibrations, smooth and low-frequency reverse, high assembly accuracy, no elastic deformations	1 - 1.5
Normal installation conditions	1.5 - 2
Shocks and vibrations, high-frequency reverse, significant elastic deformation	2 - 3.5
The ratio of the actual load to maximum permissible load may be as large	Tab. 15

as the reciprocal of the accepted safety factor, S_{o} , at the most.

$$\frac{P_{0rad}}{C_{0rad}} \leq \frac{1}{S_0} \qquad \frac{P_{0ax}}{C_{0ax}} \leq \frac{1}{S_0} \qquad \frac{M_1}{M_x} \leq \frac{1}{S_0} \qquad \frac{M_2}{M_y} \leq \frac{1}{S_0} \qquad \frac{M_3}{M_z} \leq \frac{1}{S_0}$$

The formulas above apply for a single load case. If there are two or more of the described forces simultaneously, the following check must be made:

$$\frac{-\frac{P_{0rad}}{C_{0rad}} + \frac{-\frac{P_{0ax}}{C_{0ax}} + \frac{-M_1}{-M_x} + \frac{-M_2}{-M_y} + \frac{-M_3}{-M_z} \le \frac{1}{-S_0}$$

 $\begin{array}{l} \mathsf{P}_{\text{Orad}} = \text{effective radial load} \\ \mathsf{C}_{\text{Orad}} = \text{permissible radial load} \\ \mathsf{P}_{\text{Oax}} = \text{effective axial load} \\ \mathsf{C}_{\text{Oax}} = \text{permissible axial load} \\ \mathsf{M}_1 = \text{effective moment in the x-direction} \\ \mathsf{M}_x = \text{permissible moment in the x-direction} \\ \mathsf{M}_2 = \text{effective moment in the y-direction} \\ \mathsf{M}_y = \text{permissible moment in the y-direction} \\ \mathsf{M}_3 = \text{effective moment in the z-direction} \\ \mathsf{M}_z = \text{permissible moment in the z-direction} \\ \mathsf{M}_z = \text{permissible moment in the z-direction} \\ \end{array}$

Fig. 13

Fig. 14

Off-center load P of the slider (SN series):

For an off-center load of the slider, the different load distribution on the balls must be accounted for with a reduction of the load capacity C. As shown in the diagram to the right, this reduction of the distance, d, from the loading point is dependent on the slider center. The value, q, is the position factor, the distance, d, is expressed in fractions of slider length S. The permissible load, P, decreases as follows:

$P = q \cdot C_{_{0rad}}$	for a radial load	
$P = q \cdot C_{_{0ax}}$	for an axial load	
		Fig. 15

For the static load and the service life calculation, $P_{_{0rad}}$ and $P_{_{0ax}}$ must be replaced by the equivalent values calculated as follows (see fig. 16):

$$P_{0rad} = \frac{P}{q}$$
$$P_{0ax} = \frac{P}{q}$$

if the external load, P, acts radially

if the external load, P, acts axially

Fig. 18

Е

S

Service life

The service life of a linear bearing depends on several factors, such as effective load, operating speed, installation precision, occurring impacts and vibrations, operating temperature, ambient conditions and lubrication. The service life is defined as the time span between initial operation and the first fatigue or wear indications on the raceways.

Series SN

$$L_{km} = 100 \cdot (\frac{C}{W} \cdot \frac{1}{f_{c}})^{2}$$

Series SNK

$$L_{Km} = 100 \cdot \left(\frac{C}{W} \cdot \frac{f_c}{f_i} \cdot f_h\right)^2$$

In practice, the end of the service life must be defined as the time of bearing decommissioning due to its destruction or extreme wear of a component.

This is taken into account by an application coefficient (f_i in the formula below), so the service life consists of:

$$\begin{array}{l} \mathsf{L}_{\mathsf{km}} &= \mathsf{calculated \ service \ life \ (\mathsf{km})}\\ \mathsf{C} &= \mathsf{dynamic \ load \ capacity \ (\mathsf{N}) = \mathsf{C}_{_{0rad}}\\ \mathsf{W} &= \mathsf{equivalent \ load \ (\mathsf{N})}\\ \mathsf{f}_{_{i}} &= \mathsf{application \ coefficient \ (see \ tab. \ 17)}\\ \end{array}$$

Fig. 20

Fig. 21

1,1 1,2 1,3 1,4 1,5

The stroke factor f_h takes into account the higher load of the raceways and rollers during short strokes on the same total length of run. The corresponding values are taken from the following graph (for strokes longer than 1 m, $f_h = 1$):

Number of sliders	1	2	3	4
f _c	1	0.8	0.7	0.63
				Tab. 16

Application coefficient f

Neither impacts nor vibrations, smooth and low-frequency direction change, clean operating conditions, low speed (<0.5 m/s)	1 - 1.5
Slight vibrations, average speeds (between 0.5 and 0.7 m/s) and average direction change	1.5 - 2
Impacts and vibrations, high-frequency direction change, high speeds (>0.7 m/s), very dirty environment	2 - 3.5
	Tab. 17

1,1

0,9 0,8

0,7 0,6 0,5 0,4 0,3 0,2 0,1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

If the external load, P, is the same as the dynamic load capacity, C_{0rad} , (which must never be exceeded), the service life at ideal operating conditions ($f_i = 1$) amounts to 100 km. Naturally, for a single load P, the following applies: W = P. If several external loads occur simultaneously, the equivalent load is calculated as follows:

$$W = P_{rad} + (\frac{P_{ax}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot C_{0rad}$$

Stroke [m]

Fig. 22

Clearance and preload

The linear ball bearings of the SN and SNK series are mounted as standard with no play. For more information, please contact Rollon technical support.

* for higher preload, contact Rollon technical support.

Coefficient of friction

With correct lubrication and installation on level and rigid surfaces and sufficient parallelism for rail pairs, the friction value is less than or equal to 0.01. This value can vary depending on the installation situation (see pg. ES-19, Instructions for use). For the SNK series, the coefficient of friction is equal to or less than 0.06.

Linear accuracy

With installation of the rails using all bolts on a perfectly plane support surface with the fixing holes in a straight line, the linear accuracy of the sliders to an external reference results from the following equation:

H = Stroke

Fig. 23

E S

Speed

The linear bearings of the SN series can be used up to an operating speed of 0.8 m/s (31.5 in/s). With high-frequency direction changes and the resulting high accelerations, as well as with long ball cages, there is a risk of cage creep (see pg. ES-19, Instructions for use). The SNK series rails, on the other hand, reach a maximum speed of 1.5 m/s, and there is no risk of cage creep.

≥ Temperature

The SN series can be used in ambient temperatures from -20 °C to +170 °C (-4 °F to +338 °F). The SNK series can be used at ambient temperatures between -20 °C and + 70 °C. A lithium lubricant for high operating temperatures is recommended for temperatures above +130 °C (+266 °F).

Anticorrosive protection >

The SN series standard anticorrosive protection is electrolytic zinc plating in accordance with ISO 2081. If increased anticorrosive protection is required, chemically nickel plated rails and stainless steel ball bearings are available.

Lubrication SN

Recommended lubrication intervals are heavily dependent upon the ambient conditions. Under normal conditions, lubrication is recommended after 100 km operational performance or after an operating period of 6 months. In critical application cases the interval should be shorter. Please clean the raceways carefully before lubrication. Raceways and spaces of the ball cage are lubricated with a lithium lubricant of average consistency (roller bearing lubricant).

Different lubricants are available on request for special applications:

- FDA-approved lubricant for use in the food industry
- specific lubricant for clean rooms

Lubrication SNK

Lubrication when using N-sliders SNK43

The SNK43 sliders are fitted with a self lubricating kit provided to periodically lubricate the slider.

This provides a progressive release of lubricant (see tab. 19) on the raceway during operation of the slider. The expected service life is up to 2 million cycles, depending on the type of application. The zerk fittings (see fig. 24) provide the lubrication.

- Numerous application-specific surface treatments are available upon request, e.g., FDA-approved nickel plating for use in the food industry. For more information, please contact Rollon technical support.
- specific lubricant for the marine technology sector
- specific lubricant for high and low temperatures
- For specific information, contact Rollon technical support. Under normal conditions, correct lubrication:
- reduces friction
- reduces wear
- reduces stress on contact surfaces due to elastic deformation
- reduces noise during operation
- increases the regularity of the rolling movement

Different lubricants are available on request for special applications:

- FDA-approved lubricant for use in the food industry
- specific lubricant for clean rooms
- specific lubricant for the marine technology sector
- specific lubricant for high and low temperatures

For specific information, contact Rollon technical support.

Lubricant	Thickening agent	Temperature range [°C]	Kinematic viscosity 40°C [mm²/s]
Mineral oil	Lithium soap	-30 to +120	approx 110
Roller bearing lubricant	Lithium soap	-30 to +170	approx 160

Tab. 19

Grease applicator M6x1 DIN 3405 compliant

ES-16

Fixing screws

The rails of the SN series in sizes 22 to 43 mm are fixed with countersunk head screws according to DIN 7991.

The SNK43 series rails are fastened with countersunk head screws according to DIN 7991 or with Torx[®] head screws (special design, see fig. 25). The Torx[®] screws for the rails variant TSC are included.

Size	Screw type	d	D [mm]	L [mm]	K [mm]	S	Tightening torque
63	M8 x 20	M8 x 1.25	13	20	5	T40	34,7
SNK43	M8 x 16	M8 x 1,25	16	16	3	T40	22
							Tab. 20

Recommended Standard fixing screw tightening torques

Property class	Size	Tightening torque [Nm]
	22	3
	28	6
10.9	35	10
	43	25
	63	30
		Tab. 21

A support of the rail sides is not strictly necessary, but it helps reduce stress on the screws and increases rigidity.

>

Installation instructions

- The internal stops on the SN series are used to stop the unloaded slider and the ball cage. Please use external stops as end stops for a loaded system.
- Prepare a sufficient bevel on the threaded fixing holes, according to the following table:

Size	Bevel (mm)
22	0,5 x 45°
28	1 x 45°
35	1 x 45°
43	1 x 45°
63	1 x 45°

Rail Bracket

A support is advisable if the safety coefficient of the application is equal to or lower than 1.5.

To achieve optimum running properties, high service life and rigidity, it is necessary to fix the linear bearings with all accessible holes on a rigid and level surface.

Tab. 22

Ε

S

ES-17

SNK Joined Rails

If long guide rails are required, two or more rails can be joined to the desired length. When putting guide rails together, be sure that the register marks shown in fig. 28 are positioned correctly.

These are fabricated asymmetric for parallel application of joined guide rails, unless otherwise specified.

General information

The maximum available rail length in one piece is indicated in table 13 on page ES-10. Longer lengths are achieved by joining two or more rails (joined rails).

Rollon machines the rail ends at a right angle to the impact surfaces and marks them. Additional fixing screws are included with the delivery, which ensure a problem-free transition of the slider over the joints, if the following installation procedures are followed. Two additional threaded holes are required in the load-bearing structure. The included end fixing screws correspond to the installation screws for the rails for cylindrical counterbores. The alignment fixture for aligning the rail joint can be ordered using the designation given in the table (tab. 23).

Rail type	A [mm]	Threaded hole (load-bearing structure)	Screw type	L [mm]	Alignment fixture
TSC/TSV	11	M8	see pg. ES-17	16	AT43
					Tab. 23

SN instructions for use

For linear bearings of the SN series, the sliders are guided through a ball cage inside the rails. When the sliders run their course relative to the rails, the ball cage moves along for half the slider stroke. The stroke ends as soon as the slider reaches the end of the cage.

Normally the cage moves synchronously to the balls at half the speed of the slider. Any occurring cage slip affects the synchronous movement of the ball cage negatively, causing it to reach the internal stops prematurely (cage creep). This reduces the stroke. However, the stroke value can be normalized at any time by moving the slider to the stop in the stopped cage. This moving of the slider relative to the cage will have increased resistance, which is dependent on the working load.

- The causes of cage creep can be installation accuracy, dynamics, and load changes. The effects can be minimized by observing the following advice:
 - The stroke should always remain constant and come as close as possible to the nominal stroke of the linear bearing.
 - For applications with various strokes, make sure that the drive is sufficiently dimensioned to guarantee a movement of the slider relative to the cage. A coefficient of friction of 0.1 should be calculated for this.
 - Another possibility is to include a maximum stroke without load in the working cycle in order to resynchronize the slider and ball cage.
 Parallelism errors or inaccuracies in the installation or in the mounting surfaces of mounted pairs can influence the cage creep.
- Series SN linear bearings should only be used for horizontal movement.

If the bearing cage covers one or more fixing holes for the rail, access holes are made in the cage. The number and position of the holes can vary in different supplies.

Access to all fixing screws of the rail is guaranteed in all cases by positioning the cage aligned with the holes.

SNK instructions for use

SNK: Always handle the slider out of the rail by its plastic retainer to prevent ball bearings from escaping.

SN Standard configurations

Size 28

SN28-60-30-130

SN28-60-190-290

SN28-60-270-370

SN28-60-350-450

SN28-60-110-210

Size 22

Ordering description	Slider	Stroke	Rail
SN22-40-60-130	40	60	130
SN22-40-140-210	40	140	210
SN22-40-220-290	40	220	290
SN22-60-40-130	60	40	130
SN22-60-120-210	60	120	210
SN22-60-200-290	60	200	290
SN22-60-280-370	60	280	370
SN22-60-360-450	60	360	450
SN22-80-100-210	80	100	210
SN22-80-180-290	80	180	290
SN22-80-260-370	80	260	370
SN22-80-340-450	80	340	450
SN22-80-420-530	80	420	530
SN22-80-500-610	80	500	610
SN22-130-130-290	130	130	290
SN22-130-210-370	130	210	370
SN22-130-290-450	130	290	450
SN22-130-370-530	130	370	530
SN22-130-450-610	130	450	610
SN22-130-530-690	130	530	690
SN22-130-610-770	130	610	770
SN22-130-690-850	130	690	850
SN22-130-770-930	130	770	930
SN22-130-850-1010	130	850	1010
SN22-210-210-450	210	210	450
SN22-210-290-530	210	290	530
SN22-210-370-610	210	370	610
SN22-210-450-690	210	450	690
SN22-210-530-770	210	530	770
SN22-210-610-850	210	610	850
SN22-210-690-930	210	690	930
SN22-210-770-1010	210	770	1010
SN22-210-930-1170	210	930	1170
SN22-290-290-610	290	290	610
SN22-290-370-690	290	370	690
SN22-290-450-770	290	450	770
SN22-290-530-850	290	530	850
SN22-290-610-930	290	610	930
SN22-290-690-1010	290	690	1010
SN22-290-850-1170	290	850	1170

SN28-80-90-210 SN28-80-170-290 SN28-80-250-370 SN28-80-330-450 SN28-80-410-530 SN28-80-490-610 SN28-130-120-290 130 SN28-130-200-370 SN28-130-280-450 130 SN28-130-360-530 SN28-130-440-610 130 SN28-130-520-690 SN28-130-600-770 130 SN28-130-680-850 SN28-130-760-930 SN28-130-840-1010 SN28-210-200-450 SN28-210-280-530 SN28-210-360-610 SN28-210-440-690 SN28-210-520-770 SN28-210-600-850 SN28-210-680-930 SN28-210-760-1010 SN28-210-920-1170 SN28-210-1080-1330 SN28-290-280-610 SN28-290-360-690 SN28-290-440-770 SN28-290-520-850 SN28-290-600-930

SN28-290-680-1010

SN28-290-1000-1330

SN28-370-360-770

SN28-370-440-850

SN28-370-520-930

SN28-370-600-1010

SN28-370-920-1330

SN28-370-760-1170

SN28-370-1080-1490

SN28-450-440-930

SN28-450-520-1010

SN28-450-840-1330

SN28-450-1000-1490

SN28-450-1160-1650

SN28-450-680-1170

SN28-290-840-1170

SN28-290-1160-1490

Ordering description Slider Stroke

Size 35

Rail

Tab. 25

Size 35			
Ordering description	Slider	Stroke	Rail
SN35-130-110-290	130	110	290
SN35-130-190-370	130	190	370
SN35-130-270-450	130	270	450
SN35-130-350-530	130	350	530
SN35-130-430-610	130	430	610
SN35-130-510-690	130	510	690
SN35-130-590-770	130	590	770
SN35-130-670-850	130	670	850
SN35-130-750-930	130	750	930
SN35-130-830-1010	130	830	1010
SN35-210-190-450	210	190	450
SN35-210-270-530	210	270	530
SN35-210-350-610	210	350	610
SN35-210-430-690	210	430	690
SN35-210-510-770	210	510	770
SN35-210-590-850	210	590	850
SN35-210-670-930	210	670	930
SN35-210-750-1010	210	750	1010
SN35-210-910-1170	210	910	1170
SN35-210-1070-1330	210	1070	1330
SN35-210-1230-1490	210	1230	1490
SN35-290-270-610	290	270	610
SN35-290-350-690	290	350	690
SN35-290-430-770	290	430	770
SN35-290-510-850	290	510	850
SN35-290-590-930	290	590	930
SN35-290-670-1010	290	670	1010
SN35-290-830-1170	290	830	1170
SN35-290-990-1330	290	990	1330
SN35-290-1150-1490	290	1150	1490
SN35-290-1310-1650	290	1310	1650
SN35-370-350-770	370	350	770
SN35-370-430-850	370	430	850
SN35-370-510-930	370	510	930
SN35-370-590-1010	370	590	1010
SN35-370-750-1170	370	750	1170
SN35-370-910-1330	370	910	1330
SN35-370-1070-1490	370	1070	1490
SN35-370-1230-1650	370	1230	1650
SN35-450-430-930	450	430	930
SN35-450-510-1010	450	510	1010
SN35-450-670-1170	450	670	1170
SN35-450-830-1330	450	830	1330
SN35-450-990-1490	450	990	1490
SN35-450-1150-1650	450	1150	1650
SN35-450-1310-1810	450	1310	1810
SN35-530-590-1170	530	590	1170
SN35-530-750-1330	530	750	1330
SN35-530-910-1490	530	910	1490
SN35-530-1070-1650	530	1070	1650
SN35-530-1230-1810	530	1230	1810
SN35-610-670-1330	610	670	1330
SN35-610-830-1490	610	830	1490
SN35-610-990-1650	610	990	1650
SN35-610-1150-1810	610	1150	1810
			Tab. 26

Tab. 26

Size 43

Ordering description	Slider	Stroke	Rail
SN43-130-110-290	130	110	290
SN43-130-190-370	130	190	370
SN43-130-270-450	130	270	450
SN43-130-350-530	130	350	530
SN43-130-430-610	130	430	610
SN43-130-510-690	130	510	690
SN43-130-590-770	130	590	770
SN43-130-670-850	130	670	850
SN43-130-750-930	130	750	930
SN43-130-830-1010	130	830	1010
SN43-210-190-450	210	190	450
SN43-210-270-530	210	270	530
SN43-210-350-610	210	350	610
SN43-210-430-690	210	430	690
SN43-210-510-770	210	510	770
SN43-210-590-850	210	590	850
SN43-210-670-930	210	670	930
SN43-210-750-1010	210	750	1010
SN43-210-910-1170	210	910	1170
SN43-210-1070-1330	210	1070	1330
SN43-210-1230-1490	210	1230	1490
SN43-210-1390-1650	210	1390	1650
SN43-290-270-610	290	270	610
SN43-290-350-690	290	350	690
SN43-290-430-770	290	430	770
SN43-290-510-850	290	510	850
SN43-290-590-930	290	590	930
SN43-290-670-1010	290	670	1010
SN43-290-830-1170	290	830	1170
SN43-290-990-1330	290	990	1330
SN43-290-1150-1490	290	1150	1490
SN43-290-1310-1650	290	1310	1650
SN43-290-1470-1810	290	1470	1810
SN43-370-350-770	370	350	770
SN43-370-430-850	370	430	850
SN43-370-510-930	370	510	930
SN43-370-590-1010	370	590	1010
SN43-370-750-1170	370	750	1170
SN43-370-910-1330	370	910	1330
SN43-370-1070-1490	370	1070	1490
SN43-370-1230-1650	370	1230	1650
SN43-370-1390-1810	370	1390	1810
SN43-450-430-930	450	430	930
SN43-450-510-1010	450	510	1010
SN43-450-670-1170	450	670	1170
SN43-450-830-1330	450	830	1330
SN43-450-990-1490	450	990	1490
SN43-450-1150-1650	450	1150	1650
SN43-450-1310-1810	450	1310	1810
SN43-450-1470-1970	450	1470	1970
SN43-530-590-1170	530	590	1170
SN43-530-750-1330	530	750	1330
SN43-530-910-1490	530	910	1490
SN43-530-1070-1650	530	1070	1650
SN43-530-1230-1810	530	1230	1810
SN43-530-1390-1970	530	1390	1970
SN43-610-670-1330	010	670	1330
	610		
SN43-610-830-1490	610	830	1490
		830 990	1490 1650
SN43-610-830-1490	610		

Tab. 27

Size 63

Ordering description	Slider	Stroke	Rail
SN63-130-400-610	130	400	610
SN63-130-480-690	130	480	690
SN63-130-560-770	130	560	770
SN63-130-640-850	130	640	850
SN63-130-720-930	130	720	930
SN63-130-800-1010	130	800	1010
SN63-210-320-610	210	320	610
SN63-210-400-690	210	400	690
SN63-210-480-770	210	400	770
			850
SN63-210-560-850	210	560	
SN63-210-640-930	210	640	930
SN63-210-720-1010	210	720	1010
SN63-210-880-1170	210	880	1170
SN63-210-1040-1330	210	1040	1330
SN63-210-1200-1490	210	1200	1490
SN63-210-1360-1650	210	1360	1650
SN63-290-240-610	290	240	610
SN63-290-320-690	290	320	690
SN63-290-400-770	290	400	770
SN63-290-480-850	290	480	850
SN63-290-560-930	290	560	930
SN63-290-640-1010	290	640	1010
SN63-290-800-1170	290	800	1170
SN63-290-960-1330	290	960	1330
SN63-290-1120-1490	290	1120	1490
SN63-290-1280-1650	290	1280	1650
SN63-370-320-770	370	320	770
SN63-370-400-850	370	400	850
SN63-370-480-930	370	480	930
SN63-370-560-1010	370	560	1010
SN63-370-720-1170	370	720	1170
SN63-370-880-1330	370	880	1330
SN63-370-1040-1490	370	1040	1490
SN63-370-1200-1650	370	1200	1650
SN63-370-1360-1810	370	1360	1810
SN63-450-400-930	450	400	930
SN63-450-480-1010	450	480	1010
SN63-450-640-1170	450	640	1170
SN63-450-800-1330	450	800	1330
SN63-450-960-1490	450	960	1490
SN63-450-1120-1650	450	1120	1650
SN63-450-1280-1810	450	1280	1810
SN63-530-560-1170	530	560	1170
SN63-530-720-1330	530	720	1330
SN63-530-880-1490	530	880	1490
SN63-530-1040-1650		1040	1650
SN63-530-1040-1850	530 530	1200	1810
SN63-530-1360-1970	530	1360	1970
SN63-610-640-1330	610	640	1330
SN63-610-800-1490	610	800	1490
SN63-610-960-1650	610	960	1650
SN63-610-1120-1810	610	1120	1810
SN63-610-1280-1970	610	1280	1970
			Tab. 28

The most commonly used standard configurations are shown in the tables. Other deviating configurations and customer-specific adaptations are possible. For more information, please contact Rollon Technical Support.

SN Version 1 with a slider

SN	35	290	430	770	K1	NIC	
							urface protection 16, Anticorrosive protection
					Clearance ar <i>see pg. ES-1</i>	nd preload, if	deviating from standard
				Rail length	see pg. Es	S-5, tab. 2, 4	, 6, 8, 10
			Stroke a	see pg. ES-5,	fig. 7, tab. 1	to 10	
		Slider length	see pg.	ES-5, tab. 1,	3, 5, 7, 9		
	Size se	e pg. ES-5					
Product type)						

Ordering example 1: SN35-0290-0430-0770

Ordering example 2: SN35-0290-0430-0770-K1-NIC

Notes on ordering: Rail and slider lengths, as well as strokes, are always stated with 4 digits. Please use zeroes to fill in for lengths with less than 4 digits

SN version 2 with multiple independent sliders

Ordering example 1: SN43-2x0290-0350-1330

Ordering example 2: SN43-2x0290-0350-1330-G1-NIC

If the individual slider lengths and/or strokes are different, please order according to ordering example 3.

Ordering example 3: SN28-1x0200-0300/1x0250-0415-1240

Notes on ordering: Rail and slider lengths, as well as strokes, are always stated with 4 digits. Please use zeroes to fill in for lengths with less than 4 digits

SN 63 850 (370+290) 400 1330 K1 NIC Expanded surface protection see pg. ES-16, Anticorrosive protection Clearance and preload, if deviating from standard see pg. ES-15, tab. 18 Rail length see pg. ES-5, tab. 2, 4, 6, 8, 10 Stroke see pg. ES-5, fig. 7, tab. 1 to 10 Individual length of slider see pg. ES-5, tab. 1, 3, 5, 7, 9 Apparent length, S' of the slider see pg. ES-8, fig. 9 Size see pg. ES-5 Performance characteristics Product type

SN Version 3 with multiple synchronized sliders

Ordering example 1: SN63-0850(370+290)-0400-1330

Ordering example 2: SN63-0850(370+290)-0400-1330-K1-NI C

Notes on ordering: Rail and slider lengths, as well as strokes, are always stated with 4 digits. Please use zeroes to fill in for lengths with less than 4 digits

Serie SNK

SNK	43	1	110	2320	TSC	NIC
						For surface protection different from standard ISO 2081 see pg. ES-16
					Tipo di guida	
				Rail length	see pg. Es	S-10 tab 13
			Slider length	see pg.	ES-10.	
		Number of s	liders for each	ı rail		
	Size se	e pg. ES-5 Pe	rformance cha	aracteristics		
Product type	9					

Ordering example: SNK43-1x110-02320-TSC-NIC

Rail kit: 1x2000+1x320 (only for joined rails)

Drilling pattern: 40-40x80-40//40-15x80-40 (always state the drilling pattern separately)

Note for ordering: Rail lengths are always shown with five figures, and slider lengths are indicated with three figures preceded by zeros

																	_
																	_
																	_
																	_
																	_
<u> </u>							_										
Ĺ											 		 				

Product explanation $\parallel \checkmark$

Curviline are curvilinear rails for constant and variable radii

Curviline is the name of the curvilinear rail product family that is used for all non-linear special movements. Rails with constant or variable radii may be specified according to customer requirements, resulting in a highly flexible, economical solution. Curviline is available in two rail widths.

The use of standard radii is recommended. All non-standard rail layouts and radii are possible as custom products, however extra lead time may result.

The most important characteristics:

- Straight and curved sections in one continuos rail is possible
- Sliders with four rollers arranged in pairs maintain the preload over the entire rail length
- Custom production according to customer requirements
- Also available in stainless steel

Preferred areas of application of the Curviline product family:

- Packaging machines
- Railway car interior doors
 - Special extensions
 - Shipbuilding (interior doors)
 - Food industry

1 Product explanation

Constant radii

The layout of CKR guide rails corresponds to a partial section of a complete circle.

Variable radii

CVR curvilinear rail is a combination of variable radii and straight sections.

Fig. 3

Straight rail

The linear rail Curviline is also available in its straight version.

Fig. 4

Slider

The carriage maintains the desired preload over the entire rail layout. Pivoting roller mounts coupled with concentric and eccentric rollers allows for a smooth operation over complex rail layouts.

Technical data

Fig. 6

Performance characteristics:

- Available rail widths: CKR01/CVR01: 16.5 mm (0.65 in) and CKR05/CVR05: 23 mm (0.91 in)
- Max. slider operating speed on the rail: 1.5 m/s (59 in/s) (depending on application)
- Max. acceleration: 2 m/s² (78 in/s²) (depending on application)
- Max. effective length of the rail: 3,240 mm (127.56 in)
- Max. traverse: CCT08: 3,170 mm (124.8 in) and CCT11: 3,140 mm (123.62 in)
- Minimum radius for stainless steel version and non-hardened version 120 mm
- Minimum radius for version with tempered raceways:
 300 mm for section 01, 400 mm for size 05
 For non-standard radii, please contact Rollon technical support.
- Radius tolerance +/- 0.5 mm (0.02 in), angle tolerance +/- 1°
- Temperature range: -20 °C to +80 °C (-4 °F to +176 °F)
- Rail and runner electrolytic zinc-plated and passivated (Rollon Aloy); increased anticorrosive protection on request (see pg. CL-12 Anticorrosive protection)
- Rail material: C43, AISI316L for the stainless steel version
- Slider body material: Fe360, AISI316L for the stainless steel version
- Radial ball bearing roller material: 100Cr6, AlSI440 for the stainless steel version
- Rollers are lubricated for life

Remarks:

- With a simple adjustment of the eccentric roller (denoted with a marking on the bottom of the roller), the slider preload can be set to desired preload, including clearance.
- The recommended hole pitch is 80 mm (3.15 in) on the extended length
- Please indicate the precise rail layout and the desired hole pattern in a drawing
- Indicate if the design is a right or left version when ordering
- Joints are possible in straight sections. For more information, please contact Rollon technical support.
- Resulting moment loads must be absorbed through the use of two sliders. For more information, please contact Rollon technical support.

Product dimensions

Rails with constant/variable radii with tempered raceways >

² For curved linear rails with variable radius, there must always be a straight section (Y) between two successive curved sections. Refer to tab.18 on pag. CL-15 to define the minimum length required for the straight section (Y).

² Fixing holes (C) for socket cap screws according to DIN 912

Туре	D [mm]	K [mm]	F	C²	V¹	X	Standard radii [mm]	Y [mm]	Weight [kg/m]
CKRH01 CVRH01	16.5	10	up to M6	up to M5	up to M5	dependent on	300* - 400 - 500 - 600 -	min. 70	1.2
CKRH05 CVRH05	23	13.5	up to M8	up to M6	up to M6	radius	700 - 800 - 900 - 1000	11111.70	2.2
* Only for size	01								Tab. 1

шy

Please indicate the precise rail layout and the desired hole pattern in a drawing. We recommend 80 mm (3.15 in) on the extended length as a gage for the hole pattern.

Non-standard radii are possible as special products. For more information on rail layouts, radii and hole patterns, please contact Rollon Technical Support.

Slider

Туре	G [mm]	H [mm]	l [mm]	L [mm]	M [mm]	N [mm]	S [mm]	F	Weight [kg]
CCT08/CCT26	70	50	10	30	10	50	10	M5	0.45
CCT11/CCT27	100	80	12.5	55	10	80	10	M8	1.1
									Tab. 2

Mounted sliders and rails

Configuration	A [mm]	B [mm]	E [mm]
CKRH01-CCT08 CVRH01-CCT08	60	32.3	5.7
CKRH01-CCT26 CVRH01-CCT26	60	32	5.7
CKRH05-CCT11 CVRH05-CCT11	89.5	36.4	7.5
CKRH05-CCT27 CVRH05-CCT27	89.5	36	7.5
			Tab. 3

Load capacities

Slider type	Load capacities						
	C _{0ax} [N]	C _{Orad} [N]					
CKRH01-CCT08/CCT26 CVRH01-CCT08/CCT26	592	980					
CKRH05-CCT11/CCT27 CVRH05-CCT11/CCT27	1459	2475					
Resulting moment loads must be absorb through the use of two sliders	ed	Tab. 4					

C L

Rails with constant/variable radii in carbon steel

Refer to tab.18 on pag. CL-15 to define the minimum length required for the straight section (Y).

² Fixing holes (C) for socket cap screws according to DIN 912

Туре	D [mm]	K [mm]	F	C²	V	X	Standard radii [mm]	Y [mm]	Weight [kg/m]
CKR01 CVR01	16.5	10	up to M6	up to M5	up to M5	dependent on	150 - 200 - 250 - 300 - 400 - 500 - 600 -	min. 70	1.2
CKR05 CVR05	23	13.5	up to M8	up to M6	up to M6	radius	700 - 800 - 900 - 1000	11111.70	2.2

Tab. 5

Please indicate the precise rail layout and the desired hole pattern in a drawing. We recommend 80 mm (3.15 in) on the extended length as a gage for the hole pattern.

Non-standard radii are possible as special products. For more information on rail layouts, radii and hole patterns, please contact Rollon Technical Support.

Slider

Туре	G [mm]	H [mm]	l [mm]	L [mm]	M [mm]	N [mm]	S [mm]	F	Weight [kg]
CCT08/CCT26	70	50	10	30	10	50	10	M5	0.45
CCT11/CCT27	100	80	12.5	55	10	80	10	M8	1.1
									Tab. 6

Mounted sliders and rails

Configuration	A [mm]	B [mm]	E [mm]
CKR01-CCT08 CVR01-CCT08	60	32.3	5.7
CKR01-CCT26	00	20	Г 7
CVR01-CCT26	60	32	5.7
CKR05-CCT11 CVR05-CCT11	89.5	36.4	7.5
CKR05-CCT27	89.5	36	7.5
CVR05-CCT27	03.0	50	7.3 Tab. 7

Load capacities

Slider type	Load capacities			
	C _{0ax} [N]	C _{0rad} [N]		
CKR01-CCT08/CCT26 CVR01-CCT08/CCT26	400	570		
CKR05-CCT11/CCT27 CVR05-CCT11/CCT27	1130	1615		
Resulting moment loads must be absor	hod	Tab. 8		

Resulting moment loads must be absorbed through the use of two sliders

Tab. 8

C L

Rails with constant/variable radii in stainless steel >

Refer to tab.18 on pag. CL-15 to define the minimum length required for the straight section (Y).

 $^{\scriptscriptstyle 2}$ Fixing holes (C) for socket cap screws according to DIN 912

Туре	D [mm]	K [mm]	F	C²	V ¹	X	Standard radii [mm]	Y [mm]	Weight [kg/m]
CKRX01 CVRX01	16.5	10	up to M6	up to M5	up to M5	dependent on	150 - 200 - 250 - 300 - 400 - 500 - 600 -	min. 70	1.2
CKRX05 CVRX05	23	13.5	up to M8	up to M6	up to M6	radius	700 - 800 - 900 - 1000		2.2

Tab. 9

Please indicate the precise rail layout and the desired hole pattern in a drawing. We recommend 80 mm (3.15 in) on the extended length as a gage for the hole pattern.

Non-standard radii are possible as special products. For more information on rail layouts, radii and hole patterns, please contact Rollon Technical Support.

Slider in stainless steel

Туре	G [mm]	H (mm)	l [mm]	L (mm)	M [mm]	N [mm]	S [mm]	F	Weight [kg]
CCTX08	70	50	10	30	10	50	10	M5	0.45
CCTX11	100	80	12.5	55	10	80	10	M8	1.1
									Tab. 10

Rail-slider package in stainless steel

Configuration	A [mm]	B [mm]	E [mm]
CKRX01-CCTX08 CVRX01-CCTX08	60	32.3	5.7
CKRX05-CCTX11 CVRX05-CCTX11	89.5	36.4	7.5
			Tab. 11

Load capacities

Slider type	Load capacities				
	C _{0ax} [N]	C _{orad} [N]			
CKRX01-CCTX08 CVRX01-CCTX08	400	570			
CKRX05-CCTX11 CVRX05-CCTX11	1130	1615			
Resulting moment loads must be absorbed Tab. 12					

through the use of two sliders

Technical instructions

Slider with joint >

In applications involving the simultaneous use of two sliders connected to the same mobile element and along a curved guide with variable radius, or combined straight and curved sections in the same guide, a joint between the sliders and the mobile element is necessary to avoid jamming of the sliders in the areas of changing curvature. Alternatively, Rollon can supply, for each type of slider in the catalog, a special version with an oscillating plate that enables the joint, guaranteeing optimal movement and eliminating the need to build the joint on the moving structure.

Slider dimensions - CCT32/CCT36

Slider dimensions - CCT33/CCT37

G

Ν

4 x F

Q

Fig. 24

Туре	Rail size [mm]	G [mm]	H [mm]	l [mm]	L [mm]	M [mm]	N [mm]	S [mm]	F	P [mm]	Q [mm]
CCT32*1/CCT36*2	01	70	50	7.5	30	25	20	10	M6	50	35
CCT33*1/CCT37*2	05	100	80	25	30	35	30	10	M8	50	50
1) Slider with thrust roller bearings (CCT32/CCT33). Not available in stainless steel.										Tab. 13	

1) Slider with thrust roller bearings (CCT32/CCT33). Not available in stainless steel.

2) Slider with thrust washers on the steering arms and axial roller bearings on the central joint (CCT36/CCT37). Not available in stainless steel.

Mounted sliders and rails

Configuration	A [mm]	B [mm]	E [mm]
CCT32/CCT36	60	42.5	5.7
			Tab. 14

Mounted sliders and rails

Configuration	A [mm]	B [mm]	E [mm]
CCT33/CCT37	89.5	46.5	7.5
			Tab. 15

Load capacities >

Rails	Temperated raceways Load capacities		Carbo	n steel	Stainless steel			
			Load ca	pacities	Load capacities			
Slider type	C _{oax} [N]	C _{orad} [N]	C _{0ax} [N]	C _{orad} [N]	C _{0ax} [N]	C _{orad} [N]		
CCT32/CCT36	592	980	400	570	400	570		
CCT33/CCT37	1459	2475	1130	1615	1130	1615		
Resulting moment loads must be absorb	Resulting moment loads must be absorbed through the use of two sliders Tab. 16							

Resulting moment loads must be absorbed through the use of two sliders

Anticorrosive protection >

The Curviline product family comes standard with electrolytic zinc plating with passivation for anitcorrosion protection. If increased anticorrosive protection is required, application-specific surface treatments are available on request, e.g. as nickel-plated design with FDA approval for use in the food industry. Rails of Curviline series are available also in stainless steel (rails CKRX, CVRX), with the sliders in stainless steel CCTX08 and CCTX11 (page CL-10/11). All other sliders have a standard surface treatment of zinc plating with passivation and, on request, can be supplied with increased anticorrosion protection (zinc-nickel or nickel plating) with rollers in stainless steel (AISI 440).

Lubrication

Roller lubrication

All rollers of the Curviline product family are lubricated for life.

Lubrication of the raceways

Rails must be lubricated before operation. Recommended lubrication intervals are heavily dependent upon the ambient conditions, speed and temperature. Under normal conditions, lubrication is recommended after 100 km operational performance or after an operating period of six months. In critical application cases the interval should be shorter. Please clean the raceways carefully before lubrication.

We recommend a roller bearing lubricant with a lithium base of average consistency.

Proper lubrication during normal conditions:

- reduces friction
- reduces wear
- reduces the load of the contact surfaces through elastic deformations
- reduces running noise

Туре	Tightening torque [Nm]
CCT08	7
CCT11	12
	Tab. 17

Different lubricants are available by request for special applications:

FDA-approved lubricant for use in the food industry

specific lubricant for the marine technology sector

For specific information, contact Rollon technical support.

specific lubricant for high and low temperatures

specific lubricant for clean rooms

Setting the preload

If the curvilinear rails are delivered as a system, the sliders are already set with no clearance. In this case the fixing screws are secured with Loctite[®] at the factory.

If delivered separately, or if the sliders should be installed in another track, the eccentric roller pins must be readjusted. Important: The fixing screws must be additionally glued against loosening. The following points must also be observed:

- Wipe the raceways of any dirt and debris.
- Slightly loosen the fixing screws of the roller mounting.
 The eccentric roller pins are marked on the bottom.
- Position the slider(s) at the ends of the rail.
- The special flat key provided is inserted from the side onto the hexagonal of the roller to be set (see fig. 28).

- By turning the flat key clockwise the roller is pressed against the raceway and thus reduces the clearance. Observe that with increasing preload, the friction is also increased and thus the service life reduced.
- Hold the roller pin with the adjustment key in the desired position and carefully tighten the fixing screw. The exact tightening torque will be checked later.
- Move the slider on the rail and check the preload over the entire length of the rail. It should move easily and the slider should not have play at any location of the rail.
- Now tighten the fixing screws with the specified tightening torque (see tab. 17), while the flat key holds the angle adjustment of the pin. A special thread in the roller pin secures the set position.

Configurations	GCT01	GCT05
Y H	Se Ra < 133 mm, Y ≥ 80 mm	Se Ra < 195 mm, Y \ge 80 mm
Ra Ra	Se Ra > 133 mm, Y ≥ 70 mm	Se Ra >195 mm, Y \ge 70 mm
* Y	Se Ra > 133 mm e Rb < 133 mm Y ≥ 100 mm (*)	Se Ra > 195 mm e Rb < 195 mm Y ≥ 100 mm (*)
Ra	Se Ra > 133 mm e Rb > 133 mm Y ≥ 70 mm (*)	Se Ra $>$ 195 mm e Rb $>$ 195 mm Y \ge 70 mm (*)
	Se Ra < 133 mm e Rb < 133 mm Y ≥ 80 mm (*)	Se Ra < 195 mm e Rb < 195 mm Y ≥ 80 mm (*)
Y Rà	Se Ra < 133 mm, Y ≥ 80 mm	Se Ra < 195 mm, Y ≥ 80 mm
Ra	Se Ra > 133 mm, Y ≥ 60 mm	Se Ra > 195 mm, Y ≥ 60 mm
⊦ <u> </u>	Se Ra > 133 mm e Rb < 133 mm Y ≥ 100 mm (*)	Se Ra > 195 mm e Rb < 195 mm Y \geq 100 mm (*)
Ra	Se Ra $>$ 133 mm e Rb $>$ 133 mm Y \geq 60 mm (*)	Se Ra > 195 mm e Rb > 195 mm Y ≥ 60 mm (*)
	Se Ra < 133 mm e Rb < 133 mm Y ≥ 80 mm (*)	Se Ra < 195 mm e Rb < 195 mm Y ≥ 80 mm (*)

 $(\ensuremath{^\star})$ the above rules are independent of the sequence of the Ra and Rb radii on the circuit

C L

Tab. 18

Ordering example: CKR01-085°-0600-0890/2/CCT08-NIC-R

Note: Information for right and left side installation and for expanded surface protection is only necessary if required

Notes on ordering: Rail lengths and radii always are indicated with four digits, angles always with three digits and a zero as prefix

Exact specifications (angle, radius, hole pattern, etc.) must be represented in a drawing

Variable radius rail / slider system

Rail type see pg. CL-6, tab. 1 ; CL-8, tab. 5 ; CL-10, tab. 9

Ordering example: CVR01-039°-0200//023°-0400-0297/2/CCT08-NIC-R

Note: Data for angles and respective radii are in sequential order

Note: Information for right and left side installation and for expanded surface protection is only necessary if required

Notes on ordering: Rail lengths and radii always are indicated with four digits, angles always with three digits and a zero as prefix

Exact specifications (layout, angle, radius, hole pattern, etc.) must be represented in a drawing

≥ Constant radius rails

CKR01	120°	600	1152	NIC	R				
					Right or left	version			
				Expanded surface protection if deviation from Standard					
				see pg. CL-	12 Anticorrosi	on protection			
			Rails extend	ed length					
		Radius	see pg. CL-6,	ee pg. CL-6, tab. 1 ; CL-8, tab. 5 ; CL-10, tab. 9					
	Angle								
Rail type	see pg. CL-6, tab. 1 ; CL-8, tab. 5 ; CL-10, tab. 9								

Ordering example: CKR01-120°-0600-1152-NIC-R

Note: Information for right and left side installation and for expanded surface protection is only necessary if required Notes on ordering: Rail lengths and radii always are indicated with four digits, angles always with three digits and a zero as prefix Exact specifications (angle, radius, hole pattern, etc.) must be represented in a drawing

Variable radius rails

CVR01	39°	200	//23°	400	297	NIC	R		
							Right or left	version	
						Expanded surface protection if deviation from Standard			
						see pg. CL-12 Anticorros	ion protection		
					Rails extended	ed length			
				Radius	see pg. CL-6,	tab. 1 ; CL-8	8, tab. 5 ; CL-	10, tab. 9	
			Angle						
		Radius	Radius see pg. CL-6, tab. 1 ; CL-8, tab. 5 ; CL-10, tab. 9						
	Angle								
Rail type	see pg. CL-6, tab. 1 ; CL-8, tab. 5 ; CL-10, tab. 9								

Ordering example: CVR01-039°-0200//023°-0400-0297-NIC-R

Note: Data for various angles and respective radii are in sequential order

Note: Information for right and left side installation and for expanded surface protection is only necessary if required

Notes on ordering: Rail lengths and radii always are indicated with four digits, angles always with three digits and a zero as prefix Exact specifications (layout, angle, radius, hole pattern, etc.) must be represented in a drawing

Slider

CCT08	NIC	
	Expanded surface protection if deviation from Standard	see pg. CL-12 Anticorrosion protection
Slider type	see pg. CL-7, tab. 3 ; CL-9, tab.7 ; CL-11, tab.11	

Ordering example: CCT08-NIC

Note: Information for expanded surface protection are only necessary when needed

0-Rail

Product explanation $// \sim$

0-Rail - unique assembly possibilities

Fig. 1

The roller linear system O-Rail offers the maximum flexibility configuration due to the original shape of the guide with 3 raceways arranged at 90 $^{\circ}$ to each other where on each of those can slide rollers R..G43 series. Using a single guide, two, or more parallel guides, gives rise to a number of combinations capable of satisfying each specific need for linear motion and offering exceptional self-alignment capacity. O-Rail is constructed in high strength steel hardened with hardening treatments, for a further improvement of both performance and durability.

O-Rail is designed to be a strong and simple multitask linear system for larger handling and automation applications. It is an easy to assemble system, that offers smooth motion even on inaccurate surfaces.

FXRG series

General characteristics

New geometrical design of the contact areas, based on Gothic arch raceways

- Superior sliding
- Very low friction
- Long lifetime
- Greater load capacity
- Very compact design

New rollers, double row bearings, with increased thickness of outer ring, gothic profile and finished raceways.

- Increased load capacity
- Increased lifetime
- Extremely low noise
- High speed
- Neoprene lateral seals for dust protection

Self-aligning system when using two parallel rails, compensating large assembly inaccuracies on both longitudinal and transversal plane.

- allow for installation on non precise structures welded carpentery or aluminium frame structures
- Do not require machined fixing surfaces for installation.
 Cost saving, as easy and fast assembly

Patented process Rollon-Nox, to further improve the rail material and thermochemical hardening treatment of deep nitriding and post-oxidation black for an effective corrosion protection.

- Very high hardness
- Resistance to heavy loads
- Very low wear
- Effective corrosion protection
- Smooth black finish

0 R

Configurations

The FXRG allows a wide range of configurations when using two or more rails in parallel. Depending on required load and moment capacities/ direction more single rollers and standard sliders are used to obtain

unique Self-aligning systems. Contact ROLLON for eventual support in dimensioning customized systems .

FXRG with guiding slider with limited rotational capacity

Combination of two FXRG with resting load

Configuration with two parallel FXRG with self-aligning capacity

Telescopic configuration

Composed of two FXRG rails with rollers in between the rails fixed to mobile part and rollers on fixed structure running on outer raceways, providing a customized solutions for telescopic movements.

Configuration with two FXRG to form a single rail with a slider allowing for high Mx moments

Configuration of two FXRG

With high cantilever load capacity, meanwhile Self-aligning.

Fig. 11
Dimensions and load capacity $\parallel \sim$

FXRG series

FXRG is a high precision cold drawn profile of high strength steel. After a high depth nitride hardening treatment the rails are oxidized, assuring high hardness and excellent corrosion resistance. The characteristic black color on the whole rail is the result of oxidation and subsequent process of micro-impregnation with oils and substances for improved smoothness and long life. The fixing holes are for standard M6 cylindrical low head screws, DIN 7984, with 80mm pitch .

Position of guiding roller - Concentric RCVG43 on the three raceways

Fig. 12

0 R

Туре	A [mm]	B [mm]	S [mm]	H [mm]	C [mm]	d [mm]	D [mm]	E [mm]	Screw type	M [mm]	N [mm]	Weight [Kg/m]
FXRG	27.02	22.52	7.00	12.04	16.50	6.50	11.00	4.20	M6 DIN 7984	18.52	12.50	2.48
												Tab. 1

Туре	P [mm]	movement	P _{min} [mm]	P _{max} [mm]
FXRG	25.50	+/-1	24.50	26.50
				Tab. 2

Rotation of guiding roller R.V43G on FXRG

Fig. 14

0R-5

Available lengths and types

Version FXRG-.... and Version FXRG-....C with additional slot - see page OR-9

Dimensions

Rail codes	Length L [mm]
FXRG	400 - 480 - 560 - 640 - 720 - 800 - 880 - 960 - 1040 - 1120 - 1200 - 1280 - 1360 - 1440 - 1520 - 1600 - 1680 - 1760 - 1840 - 1920 - 2000 - 2080 - 2160 - 2240 - 2320 - 2400 - 2480 - 2560 - 2640 - 2720 - 2800 - 2880 - 2960 - 3040 - 3120 - 3200 - 3280 - 3360 - 3440 - 3520 - 3600 - 3680 - 3760 - 3840 - 3920 - 4000

Special lengths or pitches available upon request, please contact our Technical Department Highlighted rail lenghts are available from stock

Tab. 4

Version	Characteristics
BASIC	Cold drawn profile with high depth nitrade hardening "Rollon-Nox", oxidation with micro oil impregnation. Ends are cut to size after treatments and sprayed with protective black paint.

Tab. 5

Rollers for FXRG

Guiding roller R.VG and floating roller R.PG without protruding pin

Fig. 16

Rolle	r code			_		•	М	•				_	_				Dynamic	Load capacity		
Steel	Stainless steel	Туре	e Versions	Versions [E [mm]	D [mm]	C [mm]	nm] [mm]	G [mm]	N Key	A [mm]	B [mm]	P [mm]	F [mm]	L [mm]	H [mm]	Weight [g]	coefficient C [N]	Co _{rad} [N]	Co _{ax} [N]
RNVG43	RNVGX43	Concentrie	guiding		31.4								-		-		7600	4000	1190	
RNPG43	RNPGX43	Concentric	floating	-	31.2	1.2	9	92		15	MO		28.59	5.3	6.35	60	7600	4000	0	
RAVG43	RAVGX43	Facantria	guiding	0.0	31.4	14	9	2	6	10	IVIO	10.5	-	-	-	00	7600	4000	1190	
RAPG43	RAPGX43	Eccentric	floating	0.8	31.2							28.59	5.3	6.35		7600	4000	0		
																			Tab. 6	

Guiding roller RG.V and floating roller RG.P with protruding pin

Ту	pe	e [mm]	D [mm]	C [mm]	M [mm]	G [mm]	A [mm]	B [mm]	P [mm]	F [mm]	L [mm]	H [mm]	R [mm]	Q [mm]	S	N	C [N]	Co _{rad} [N]	Co _{ax} [N]	Weight [kg]
Steel	Inox																			1 31
RGNV43R	RGNVX43R		31,4							-	-	-					7600	4000	1190	
RGNP43R	RGNPX43R	-	31,2	14	0 0	10	0 15 M0	/18 12,5	28,59	5,3	6,15	2,5	11	14		7600	4000	0	0,05	
RGAV43R	RGAVX43R	0.0	31,4	14 8,8	3 1,8	15	13 100		-	-	-	2,0	h7	14	6	7600	4000	1190	0,05	
RGAP43R	RGAPX43R	0,8	31,2						28,59	5,3	6,15						4000	0		
																				Tab. 7

Self-aligning combinations

When FXRG rails are used in parallel, the use of floating rollers R.PG43 and guiding rollers R.VG43 provides a Self-aligning system, capable of compensating greate inaccuracies of structure or assembly errors. The guiding rollers R.VG43 in contact with the FXRG's gothic raceways assure

precise guiding while compensating misalignment, as they are able to rotate slightly around the longitudinal axis of about +/- 5 °. Combined with floating rollers R.PG43 on a parallel rail, such system can compensate an axial displacement of +/- 1 mm , in addition to a max. rotation of +/- 5 °.

Technical instructions

Mounting configurations

The concentric rollers should be positioned in the direction of radial loading. Warning! A single slider configuration will rotate $+/-5^{\circ}$ around the longitudinal axis of a single FXRG rail, not able to take any Mx moments.

Single rail with 3 rollers slider

It is recommended, when more than two rollers are on the same track with max. radial load, to use only two concentric rollers (as from example figure). The others should be eccentric. For cases with a wider distance between concentric rollers, please contact ROLLON's Technical departement for dimensioning.

Single rail with 5 rollers slider

Double rail with slider for high overturning moments

The rollers need to be positioned on the rail in numbers and directions according to the prevailing load. It is always preferable to orient the rollers so that the prevailing load acts radially, due to higher radial load capacity.

The rollers must be fixed on a metal surface not yielding, perfectly flat and with its fixing screws, applying a locking torque of 22 Nm.

The tightening of the fixing-screw is to be performed, while holding the roller firm with an Allen-wrench, present on the opposite side of the fixing thread. In case eccentric rollers, it is advisable to use a cup-spring washer under the screw-head to obtain a firm movement, able to maintain the roller "firm" against the surface and facilitate minor

adjustment of eccentric roller, before the final locking. The preload adjustment can also be carried out by checking the force Fi of insertion of the movable part, in which the rollers are fixed into the rail. In general for a good Fi adjustment, the inserting friction must be between 2-10 N. To increase or decrease the Fi act on eccentric rollers, opposite to the load direction (see figure below).

Eccentric roller to be aligned along

Eccentric rollers to be preloaded against raceway

In case required to have eccentric rollers on the internal rail side, it is necessary to include optional accesses, code FXRG-....C, to allow Allen-key to reach the roller. Otherwise the adjustment can take place outside of the rail.

Lubrication

Roller pin lubrication

Recommended lubrication intervals are heavily dependent upon the ambient conditions. Under normal conditions, lubrication is recommended after 100 km operational performance or after an operating period of 6 months.

Lubrication of the raceways

To reach the calculated service life, a film of lubricant should always be present between the raceway and roller, this also serves to protect against corrosion of the ground raceways. In critical application cases the interval should be shorter. Please clean the raceways carefully before lubrication. We recommend a roller bearing lubricant with a lithium base of average consistency.

Proper lubrication during normal conditions:

- reduces friction
- reduces wear
- reduces the load of the contact surfaces through elastic deformations
- reduces running noise

Joined Rails

If long guide rails are required, two or more rails can be joined to the desired length. When putting guide rails together, be sure that the register marks shown in fig. 26 are positioned correctly.

These are fabricated asymmetric for parallel application of joined guide rails, unless otherwise specified.

General information

The maximum available rail length in one piece is indicated in table 4 on page OR-6. Longer lengths are achieved by joining two or more rails (joined rails).

Rollon then machines the rail ends at a right angle to the impact surfaces and marks them. Two additional threaded holes (see fig. 27) are required in the load-bearing structure. To ensure a problem-free transition of the slider over the joints, please follow the installation procedures next page.

For information about the structure holes, the additional screws required and the alignment fixture for aligning the rail joint, please see table 7 below.

Fig. 27

Rail type	A [mm]	Threaded hole (load-bearing structure)	Screw type	Alignment fixture
FXRG	10	M6	M6 DIN 7984	ATFXR
				Tab. 8

Installation of joined rails

After the fixing holes for the rails are made in the load-bearing structure, the joined rails can be installed according to the following procedure: (1) Fix the individual rails on the mounting surface by tightening all screws except for each last one on the rail joint.

(2) Install the end fixing screws without tightening them (see fig. 28).

(3) Place the alignment fixture on the rail joint and tighten both set screws uniformly, until the raceways are aligned (see fig. 29).

(4) After the previous step (3) it must be checked if both rail backs lie evenly on the mounting surface. If a gap has formed there, this must be shimmed.

(5) The bottom of the rails should be supported in the area of the transition. Here a possible existing gap must be looked for, which must be closed if necessary for correct support of the rail ends by shims.

(6) Insert the key through the holes in the alignment fixture and tighten the screws on the rail ends.

(7) Remove the alignment fixture from the rail.

O-Rail guide

FXRG 0960

Length see pg. OR-6ff

Product type see pg. OR-2ff

Ordering example: FXRG-3120

Notes on ordering: Rail lengths and stroke lengths are always stated with 4 digits. Please pad with zeroes to fill in for lengths with less than 4 digits, e.g. 515mm length is "0515"

Product explanation $// \sim$

Prismatic Rail: with cylindrical or V-shaped rollers

The Prismatic Rail product family is composed of roller sliders sliding on V-shaped rails made of hardened steel. These linear guides also have high self-alignment properties.

V-shaped rails are induction hardened and polished, available in three sizes: 28, 35 and 55 mm. Rails can be machined with two straight cuts, one straight and one slanting cut or two slanting cuts. These options allow to create joinable versions, and thus obtaining longer strokes.

The aluminium slider can be configured with a variable number of rollers with steel pins, ranging from 3 to 6. Rollers are in turn available in two variants, cylindrical or V-shaped, with variable diameter from Ø30 a Ø62 depending on rail size.

The most important characteristics:

- Long life thanks to hardened raceways
- Optimal reliability in dirty environments
- Self-aligning system
- Simple mounting
- High dynamics

Preferred areas of application:

- Robot and handling systems
- Industrial automation
- Logistics
- Packaging machines

Drilled guide rails with straight cut:

Machining provided for guide rails with no joint.

Drilled guide rails with one straight and one slanting cut:

Machining provided for the crop down sizes of guide rail ends with joints.

Drilled guide rails with 2 slanting cuts:

Machining provided for the intermediate crop down sizes of guide rail ends with multiple joints.

Sliders with rollers Ø30 - Ø40:

Floating and fixed sliders with rollers \emptyset 30 (guide size 28) and \emptyset 40 (guide size 35).

P R

Sliders with rollers Ø52- Ø62:

Floating and fixed sliders with rollers Ø52 and Ø62 (guide size 55).

Fig. 6

Technical data 🏼 🗸 🗸

Performance characteristics:

- Sizes available: 28,35 and 55 mm.
- Rollers dimensions: Ø30 Ø40 Ø52 Ø62.
- V-shaped rollers in hardened C45 steel available for sizes 28 and 35.
- Aluminum sliders, floating and fixed, with 3, 4 or 6 rollers.
- Max. speed: 7 m/s (depending on application).
- Max. acceleration: 20 m/s² (depending on application).
- Max. radial load capacity: 15000 (per slider).
- Max. axial load capacity: 15000 (per slider).
- Operating temperature: from -10°C to +80°C.
- Induction hardened and polished rails.
- Max. rail length: 4100 mm.
- Steel assembly pins.

Notes:

- Longer stroke achievable with joinable versions.
- V-shaped rails available in drilled or non-drilled versions.
- Please follow the diagrams in every slider section to ensure correct assembly.
- For applications with high projecting loads, the sliders' rollers must be adjusted so that the load is supported by the maximum possible number of them.

Product dimensions

Steel V-shaped rails

Material: high-performance alloy steel: R > 900 MPa Hardened and tempered: core hardness 240 HB.

Induction-hardened and polished. Track hardness > 58 HRC

Features	Moment of inertia lx [mm4]	Moment of inertia ly [mm4]	Weight [Kg/m]
28.6x11	2148	14490	2
35x16	7932	36405	3.5
55x25	41906	194636	7.8
			Tab. 1

Machining: drilled guide rails with straight cut >

 $\textbf{P}__$ -.....F V-shaped guide rails, length L, drilled

Size	Treatment	L. max [mm]	P [mm]	l [mm]	A [mm]	B [mm]	C [mm]	Code
28.6x11	Induction-hardened	3980	150	40	11	7	5	P28
35x16	Induction-hardened	4100	100	50	11	7	7.5	P35
55x25	Induction-hardened	4100	150	25	18	11	11.5	P55

Tab. 2

P R

Machining: drilled guide rails with 1 straight and 1 slanting cut >

 $\textbf{P}__\textbf{-}....\textbf{FX}$ V-shaped guide rails with 1 slanting cut, length L, drilled

Size	Treatment	L. max [mm]	P [mm]	Y [mm]	l [mm]	A [mm]	B [mm]	C [mm]	Code
28.6x11	Induction-hardened	3700	150	50	50	11	7	5	P28
35x16	Induction-hardened	4000	100	50	50	11	7	7.5	P35
55x25	Induction-hardened	3950	150	25	25	18	11	11.5	P55
									Tab. 3

Machining: drilled guide rails with 2 slanting cuts >

P__-....FXX V-shaped guide rails with 2 slanting cuts, length L, drilled

Size	Treatment	L. max [mm]	P [mm]	Y [mm]	A [mm]	B [mm]	C [mm]	Code
28.6x11	Induction-hardened	3700	150	50	11	7	5	P28
35x16	Induction-hardened	3900	100	50	11	7	7.5	P35
55x25	Induction-hardened	3950	150	25	18	11	11.5	P55
								Tab. 4

Tilting roller slides with 4 rollers Ø30 for V-shaped guide rails 28x11

Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

	A [mm]	Load capacity C _{Orad} [N]	Weight [Kg]	Code
Roller slide with concentric pin	75	3818	1.8	204.0052
Roller slide with eccentric pin (±1 mm)	75	3818	1.8	204.0053
Roller slide with concentric pin	50	3818	1.4	204.0054
Roller slide with eccentric pin (±1 mm)	50	3818	1.4	204.0055

Spare parts	A [mm]	Code
Complete body with rollers		204.0050
Concentric pin	75	236.0010
Eccentric pin (±1 mm)	75	236.0011
Concentric pin	50	236.0014
Eccentric pin (±1 mm)	50	236.0015
		Tab 6

Tilting roller slides with 4 rollers Ø40 for V-shaped guide rails 35x16 >

Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.tino.

important. Territove	uie spacei	Washers 10	Ellanie Sell.	-alignment of	Silue

	A [mm]	Load capacity C _{Orad} [N]	Weight [Kg]	Code
Slide with eccentric pin (± 1 mm)	75	7071	2.2	204.0016
Slide with eccentric pin (±1 mm)	50	7071	1.8	204.0033
				Tab. 7

All pins are eccentric, but are made concentric by inserting the pin in the specific hole on the plate, in order to determine the required preload.

Spare parts	A [mm]	Code
Complete body with rollers		204.0013
Eccentric pin (±1 mm)	75	236.0011
Eccentric pin (±1 mm)	75	236.0015
		Tab. 8

PR-8

Type G roller slides (roller Ø52) and H type (roller Ø62) for V-shaped guide rails 55x25

Tilting 4-roller slides Suitable for assembly pins: Type 9

Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

Fig. 20

Ø Rollers	А
Rollers Ø52	71.75
Rollers Ø62	78.85
	Tab. 9

Technical caracteristics	Ø 52	Ø 62
Load capacity [N]	12021	14991
N° roller	4	4
Weight [Kg]	3.2	3.8
Spare parts code	204.1520	204.1521
		Tab 10

Tab. 10

I-type roller slides (roller Ø52) and L-type (roller Ø62) for V-shaped guide rails V 55x25

Tilting 6-roller slides Suitable for assembly pins: Type 9 Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

Fig. 22

Ø Roller		А	
Roller Ø52	71.75		
Roller Ø62		78.85	
			Tab. 11
Technical caracteristics		Ø 52	Ø 62
Load capacity [N]		12021	14991
N° rollers		6	6
Weight [Kg]		4.9	5.9
Spare parts code		204.1522	204.1523
			Tab. 12

V-shaped rollers (Guide Rails 28.6 x 11) anti-oxidized version

Shaped rollers with radial bearings with 2RS sealing (medium version).

* IMPORTANT: upon request, spacers can be supplied to increase the centre-distance between the guide rail and the roller supporting surface. In addition to theroller code, please indicate the required centre-distance (L). e.g. 205.0013.L

Туре	Bearing	C	COw	PR [N]	PA [N]	Speed [m/s]	Weight [Kg]	Code
Conc.	radial bearing	9500	4540	1400	600	2.5	0.8	205.0013
Exc.	radial bearing	9500	4540	1400	600	2.5	0.8	205.0014

Tab. 13

V-shaped rollers [rails 35 x 16]

Shaped rollers with two rows of angular contact ball bearings. With bilateral sliding sealing rings. Accuracy class P6.

They support loads along the axis of the pin provided Pa eff < 0.4 Pr eff.

* IMPORTANT: upon request, spacers can be supplied to increase the centre-distance between the guide rail and the roller supporting surface. In addition to the roller code, please indicate the required centre-distance (L). e.g. 205.0011.L

С **COw** PR PA Weight Code Туре Bearing Speed [N] [N] [m/s] [Kg] 21000 13900 4500 1800 2.5 1 205.0011 Conc. angular contact 4500 205.0012 21000 13900 1800 2.5 Exc. angular contact 1 Tab. 14

Spare roller with pin >

Make sure that all the components are locked in place with the appropriate screws. The recommended tightening torque for pin locking screws and nuts is 50 Nm.

Max. load factors for induction-hardened guides

Roller	Cw [N]	COw [N]	Fr amm. [N]	V max.
Ø 30	5100	3100	1350	7 m/s
Ø 40	10000	7000	2500	7 m/s
Ø 52	16700	10700	4250	6 m/s
Ø 62	21500	14500	5300	5 m/s
				Tab. 15

Spare roller with pin	Weight [Kg]	Code
Ø30 Concentric	0.02	205.0465
Ø40 Concentric	0.22	205.0464
Ø40 Eccentric (± 0.75 mm)	0.25	205.0463
Ø52 Concentric	0.4	205.0163
Ø62 Concentric	0.55	205.0165
		Tab. 16

Assembly Pins

Material: burnished steel (Rs=800 N/mm2). Special variants upon request. AISI 303 stainless steel versions are available upon request. Types 0-7-

8-9 are complete with self-lubricating bushings to make roller slide selfadjustments easier.

Type 0 assembly pins suitable for roller slide Ø30 and Ø40

* Important: machine the pin clamping plate as shown in Fig. A

1 9 1 1 2 5 OF

Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	A [mm]	
Weight [Kg]		1.1 approx.
Eccentric code (±0.75 mm)	75	236.0011
Eccentric code (±0.75 mm)	50	236.0015
		Tab 17

PR-13

Ρ

R

Type 7 assembly pins suitable for roller slide E-F >

 * Important: machine the pin clamping plate as shown in Fig. A

Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	
Weight [Kg]	1.1 approx.
Eccentric code (± 1 mm)	236.1689
	Tab. 18

Fig. 32

Assembly pins type 8 suitable for carriage E-F >

Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	
Weight [Kg]	1.8 approx.
Eccentric code (±1 mm)	236.1691
	T 1 40

Tab. 19

Type 9 assembly pins suitable for tilting roller slides G-H / I-L

Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	
Weight [Kg]	2 approx.
Concentric code	236.2076
Eccentric code (± 1.5 mm)	236.2079
	Tab. 20

V-shaped guide rail assembly inserts >

Material: C40 galvanized steel.

	Guide rails	Slot side	Screw	Code
Α	35x16/28.6x11	8	M6x20	209.0298
В	35x16	12.5	M6x25	209.1855
C	55x25	8	M8x30	209.0479
D	55x25	12.5	M10x30	209.0480
				Tab. 21

Technical instructions

Rollers and V-shaped guide rails 28.6x11 and 35x16

Material: Hardened and burnished C45 steel covering; burnished steel pins and bolts. Rollers with shaped plastic cover are available upon request. Rollers with longer centre-distance L can be supplied.

Fig. 39

P R

Identification codes for roller slides and pins

	PIN	Roller sl.	G (Ø 52)	H (Ø 62)	l (Ø 52)	L (Ø 62)
68 69,5	7	conc	-	-	-	-
	7	exc.	-	-	-	-
95 42,5	8	conc				
	U	exc.				
(95) <u>62</u> 93	9	conc	204.2092	204.2093	204.2094	204.2095
	Ū	exc.	204.2102	204.2103	204.2104	204.2105
(95) 62	10	conc	-	-	-	-
	10	exc.	-	-	-	-
(87) 62 85	11	conc	-	-	-	-
		exc.	-	-	-	-
(78) <u>62</u> 76	12	conc	-	-	-	-
	12	exc.	-	-	-	- Tah 22

Tab. 22

Identification codes for Prismatic Rail guide

Ordering example: P55-2750FX, P55-2600FXX, P55-J5200FC01

Notes on ordering: the rail length codes are always 4 digits; use zeroes as a prefix when lengths are shorter.

In case of jointed rails it is necessary to send the segmentation order.

Assembly of standard carriages / K version carriages

IMPORTANT: for applications with high projecting loads, the rollers of the slides must be adjusted so that the load is supported by the maximum possible number of rollers. If this means arranging the rollers symmetrically with respect to the standard roller slide version, please add the letter K at the end of the code when filling in the order form. However, the roller assembly can also be inverted at a later date, by disassembling the pins and rollers and then reassembling them in the opposite way.

Example:

Fig. 40

P R

PR-19

Product explanation $\parallel \checkmark$

Self-supporting and self-aligning extruded aluminum linear guides

Speedy Rail[®] beam is a heat-treated aluminium alloy profile with hollow cross-sections which makes it very strong under torsion and deflection stresses. Beams are then subject to a special patented treatment which provides a smooth, hard (700 HV) surface comparable to tempered steel. The fusion point of the non-stick surface layer (2100°C) permits an excellent resistance to welding splatters.

For these reasons the **Speedy Rail**[®] beams and components are widely used in the automotive industry to build transfer systems (lift & carry) for automated welding lines.

Speedy Rail[®] linear motion systems are lightweight, self-supporting, easy to assemble, inexpensive, modular, clean, quiet and ex stock. **Speedy Rail**[®] assemblies are very simple. Standard bolted dovetails and fishplate clamps are used for end to end joining. Rails are available in single beam up to max length 7.5 meters – 24.6 feet – and can be joined end-to-end with dovetails to build a transfer system of unlimited length. Rails have a dovetail groove on each side to accommodate any fixture. In this way it is not necessary to drill or to weld. The profiles Wide Body SR 180, Super Wide Body SR 250 are equipped with grooves and have a planarity precision so that guideways can be fixed without any mechanical machining.

The most important characteristics:

- Standard modular components
- All parts reusable
- Minimum space required
- Narrow profile
- Hard surface
- Resistance to welding splatters
- Quiet smooth operations
- Resistance to high corrosion
- Saving in assembly time
- Strong, lightweight
- Savings in reducing drive size
- Only hand tools required to assemble or modify

Preferred areas of application:

- Automotive assembly
- Woodworking and furniture
- Glass processing
- Painting lines
- Food industry
- Sheet working and laser cut machines
- Plastic extrusion, machine tools
- Appliances assembly and production
- Cardboard handling machines
- Packaging
- Tiles, shingles production
- Welding lines

Technical data // 🗸

Dimensions

Rollers and roller assemblies:

The **Speedy Rail**[®] range includes a large selection of rollers both cylindrical and "V" shaped and roller assemblies with two or more rollers. Our rollers are covered by a sintered plastic compound, resistant to pollutants and virtually maintenance-free. Ball and/or needle bearings with high performance are mounted into the rollers and can be maintained either with standard greasing procedure or lifetime lubricated. All roller boxes are equipped with concentric and eccentric pins for a quick adjustment of the contact between rollers and rail.

Standard

with 2 rollers, 1 concentric and 1 eccentric

- Blindo Beam[®]
 with 4 or 8 rollers. It provides 3 mounting surfaces
- Compact

with 2 rollers. Suitable for low clearances and limited operation room

Floating

with 4, 6 or even more rollers. Suitable for the withstanding minor misalignments on the rail mounted in pairs, one concentric and one eccentric

"V" roller support

This kind of support are suggested for light applications and constricted operation areas

Supports are mounted on the frame when the rail is movable and on the trolleys when it is fixed. By the calculation of system needs, consider the max. radial load applicable to the rollers in accordance with the description of each roller.

Speedy Rail[®] guides are available in the following sizes:

Туре	h [mm]	w [mm]
Speedy Rail 35	35	14
Speedy Rail C 48	48	28
Speedy Rail Mini	60	20
Speedy Rail Middle	90	30
Speedy Rail Standard	120	40
Speedy Rail Wide Body	180	60
Speedy Rail Super Wide Body	250	80
		Tab 1

Tab. 1

"Speedy Rail 35" guide and specification

Fig. 3

Surface quadratic moments: X-X axis = 17.779 mm4 / Y-Y AXIS = 3.665 mm4. Area = 222 mm2Max. angular distorsion = $\pm 20^{\circ}$ /m. Linear mass = 0.55 Kg/m. Max. Linear distorsion = 0.5 mm/m. Standard lengths: 1000-1500-2000-2500-3000-3500-4000-4500 mm.

External surface: deep hard anodizing

"Speedy Rail 35" assemblies and components

Fig. 4

S R

Speedy Rail guide with plain ends

Drilled Speedy Rail 35 guide - Order code 411.1405/length in mm.

Plastic compound eccentric roller, max load: radial 200 N, axial 100 N

Plastic compound concentric roller, max load: radial 200 N axial 100 N

Plastic compound concentric contrast roller, max radial load 200 N

Plastic compound eccentric contrast roller, max radial load 200 N

Sliding doors "Speedy Rail 35" application example

Overturning locking upper rollers Supporting lower rollers

Speedy Rail C 48

"Speedy Rail C 48" guide and specification

"Speedy Rail C 48" guide

Material: alluminium alloy with hardened surface (700 Hv) Surface quadratic moments: "I" XX AXIS= 152.026 mm4 "I" YY AXIS= 36.823 mm4 Section modules: W (X) = 6334 mm3 / W (Y)= 2045 mm3 Distance betweeen the centre line of opposite rolling lanes: 28,86 mm Linear mass = 1,42 kg/m. Max. Angular distorsion = $\pm 20^{\circ}/m$ max. Max. linear distorsion $= \pm 0.4$ mm/m. Max. Standard lenghts: 500-1000-1500-2000-2500-3000-3500-4000-4500-5000-5500-6000-6500-7000-7500 mm. Exterior treatment: deep hard anodizing

Rollers

Supported by ball or needle bearings. The external surface is finished with plastic compound

Speedy Rail C 48 guide without holes CR48-T 28 4 9 28.90 6.74 12.5 χ χ œ 6.74 Y

Drilled Speedy Rail C 48 with holes for front fixing

Drilled Speedy Rail C 48 with holes for rear fixing

Speedy Rail C 48" assemblies and components

4 ROLLERS ASSEMBLY		
PAG. SR-11		
SPEEDY RAIL C 48 PROFILE		
PAG. SR-8		
		B 0
		3 ROLLERS ASSEMBLY
		PAG. SR-11
/		
		1 ROLLERS ASSEMBLY
		PAG. SR-10
		CONCENTRIC ROLLER
		PAG. SR-10
		ECCENTRIC ROLLER
		PAG. SR-10
	A ton	AXIALLY FREE CONCENTRIC ROLLER
	lo me	PAG. SR-10
		AXIALLY FREE ECCENTRIC ROLLER
		PAG. SR-10

Rollers and roller boxes for "Speedy Rail C 48" guide

55.1066 - Roller assembly with one conc. axial free roller 55.1065 - Roller assembly with one ecc. axial free roller Max. Load per roller: radial 270 N No axial loading

Roller boxes for "Speedy Rail C 48" guide

55.1064 - Roller assembly with 4 rollers, 3 conc. and 1 ecc. Max. load per roller: radial 270 N / axial 100 N

55.1069 - Roller assembly with 4 rollers, 2 conc. and 2 ecc. Max. load per roller: radial 270 N / axial 100 N

On roller assemblies with 3-4 rollers it is possible to have different solutions (axial constrained, axial free, concentric and eccentric rollers).

Speedy Rail 60 / 🗸

"Speedy Rail Mini" guide and specification

Surface quadratic moments: X-X axis = 138.600 mm4 / Y-Y axis = 18.000 mm4.

Max. manufacturing tolerances = ± 0.15 mm across opposite rolling surfaces.

Max. angular distorsion = $\pm 20^{\circ}/m$.

Linear mass = 1.27 Kg/m.

Max. linear distorsion = ± 0.4 mm/m.

Standard lengths: 1000-1500-2000-2500-3000-3500-4000-4500-5000-5500-6000-6500-7000 mm.

Ext. surface: deep hard anodizing

Fig. 25

"Speedy Rail Mini" guide and components

Mini speedy rail with plain ends

Mini speedy rail with drilled ends

Fishplate for drive head

Drive head

Fig. 30

Nota: drillings on the guide end are required as a safety measure with end-to-end joining in moving rails.

See technical note on page SR-68

M6 allen round head screw

Bolt for drive head mount

Dovetail clamps and fishplates

Dovetail clamps

Fig. 33

Fishplate

Material: hard anodized aluminium alloy

Fishplate for end to end joining

Material: hard anodized	aluminium alloy
-------------------------	-----------------

Code N°	N° Holes	F	G	L	М	Material
411.1732	1	10	/	20	M4	
411.2732	1	10	/	20	M5	
411.2733	9	8	60	496	M5	
411.0732	1	10	/	20	M6	
411.0768	2	15	30	60	M6	Burnished
411.0754	3	10	30	80	M6	steel
411.0769	6	25	30	200	M6	
411.0771	2	25	100	150	M6	
411.0462	2	10	30	50	M6	
411.3532	1	10	/	20	M8	
						Tab 2

Tab. 2

Dovetail quick front insertion

Fishplate for side-arm attachment

Roller assembly and "V" rollers "Light" >

Plastic compound eccentric roller

Plastic compound concentric roller

For axially free roller see page SR-10 (55.1072 CONC. - 55.1073 ECC.)

Roller assembly with 3 rollers

Roller assembly with 4 rollers

Fig. 42

Roller assemblies and "V" rollers

6

EXAG. WR.19

Plastic compound eccentric roller

Max. load: radial 400 N axial 100 N

Fig. 43

Roller assembly with 4 rollers

Speedy Rail 90 // 🗸

"Middle Speedy Rail" guide and specifications

Surface quadratic moments: X-X axis = 630.000 mm4 / Y-Y axis = 76.500 mm4.

Max. manufacturing tolerances = ± 0.20 mm across opposite rolling surfaces.

Max. angular distorsion = $\pm 20^{\circ}/m$.

Linear mass = 2.6 Kg/m.

Max. linear distorsion = ± 0.4 mm/m.

Standard lengths: 1000-1500-2000-2500-3000-3500-4000-4500-5000-5500-6000-6500-7000-7500 mm.

External surface: deep hard anodizing

"Middle Speedy Rail" guide and components

Fig. 49

Middle Speedy Rail with drilled ends

Fishplate for drive head

End cap

Note: drillings on the guide end are required as a safety measure with end-to-end joining in moving rails.

Drive head

Bolt for drive head mount

Dovetail clamps and fishplates >

Dovetail Clamp

Code N.	N° Holes	F	G	L	М	Material
411.1025	1	25	/	50	M4	
411.1047	1	25	/	50	M6	
411.1045	1	25	/	50	M8	
411.1069	2	25	50	100	M8	Burnished steel
411.1088	3	25	50	150	M8	01001
411.1072	4	25	50	200	M8	
411.1070	6	25	50	300	M8	
						Tab. 3

Fig. 55

Dovetail-execution without step

Fishplate for end to end joining

Steel plate for m2 rack mounting

Dovetail-quick front insertion version

Fishplate for side-arm attachment

Plastic compound shell "V" rollers >

Concentric roller

Concentric roller heavy duty

Max. Load: radial 700 N/axial 280 N - Optional lifetime lubrication

Concentric roller axially free ±1.75 mm

Max. radial load: 700 N - Optional lifetime lubrication

Fig. 65

Eccentric roller heavy duty

Max. Load: radial 700 N/axial 280 N - Optional lifetime lubrication

Fig. 64

Eccentric roller axially free ±1.75 mm

Max. radial load: 700 N - Optional lifetime lubrication

Fig. 66

Roller assembly with "V" shaped rollers

Roller assembly with 4 rollers

Roller assembly with 3 rollers

The plates - cod. 411.0825 and 411.0824 - are made in aluminium alloy with hard anodization. The rollers cod. 55.0760 4 rollers ROL-C062VC-BH + ROL-E062VC-BR and 55.0759 3 rollers ROL-C062VC-BH + ROL-E062VC-BR and/or different combinations from the ones shown on this page can be mounted on the above plates. Please call our technical dept. Prior any configuration changes.

Speedy Rail 120 // 🗸

"Standard Speedy Rail" guide and specifications

Surface quadratic moments: X-X axis = 2.138.988 mm4 / Y-Y axis = 259.785 mm4.

Max. manufacturing tolerances = ± 0.20 mm across opposite rolling surfaces.

Max. angular distorsion = $\pm 20^{\circ}/m$.

Linear mass = 4.4 Kg/m.

Max. linear distorsion = ± 0.5 mm/m.

Standard lengths: 1000-1500-2000-2500-3000-3500-4000-4500-5000-5500-6000-6500-7000-7500 mm.

External surface: deep hard anodizing

"Standard Speedy Rail" assemblies and components

"Standard Speedy Rail" guide and specifications

Standard Speedy Rail with drilled ends

Note: drillings on guide end are required as a safety measure with end-to-end joining in moving rails.

Components for speedy rail SR120 guide

Fig. 73

Alluminium alloy end cap

Standard dovetail clamps

Code N.	N° Holes	F	G	L	Material
411.0745	1	25	/	50	
411.0503	2	15	40	70	
411.0469	2	25	50	100	Burnished
411.0588	3	25	50	150	steel
411.0472	2	25	150	200	
411.0470	6	25	50	300	

Tab. 4

* M10 dovetail-quick front-insertion version

411.0845 * M12 dovetail-quick front-insertion version

Dovetail clamps with M8 threaded holes

Fig. 78

Dovetail clamps with M10 threaded holes

Code N.	N° Holes	F	G	L	Material
411.0675	2	15	20	50	
411.1111	1	25	/	50	
411.1112	2	25	50	100	Burnished steel
411.1113	3	25	50	150	31661
411.0970	6	25	50	300	
					Tab 5

Tab. 5

S R

Code N.	N° Holes	F	G	L	Material
411.1117	1	25	/	50	
411.1119	2	25	50	100	Burnished steel
411.1120	3	25	50	150	0000
					Tab C

Tab. 6

Code N.	N° Holes	F	G	L	М	Material
411.1675	2	15	20	50	M8	
411.1186	1	25	/	50	M10	Burnished
411.1185	1	25	/	50	M12	steel
411.0888	3	25	50	150	M12	
						Tab. 7

Fig. 80

Steel dovetail quick front insertion without step

Fig. 81

Racks components for rigid mounting >

Fishplate for mod.3-4 rack mounting on dovetail grooves 411.1155 25 Ø12.5 25 17.5 M8 20 20.1 90 3.2 4 8 50 10

Fig. 82

For rack mounting plate mod.3 Use dovetaile 411.1111

For rack mounting plate mod.4 Use dovetail 411.1117

For standard racks see page SR-49; For dovetail see page SR-29, SR-30; For insert see page SR-53

Standard fixing fishplates

Side attachment fishplate suitable for: speedy rail standard, wide body, super wide body

Code N.	E	F	G	H	L	Material
411.0570	70	25	150	60	200	Hard anodized aluminium alloy
						Tab. 8

Fishplates for end to end joining suitable for speedy rail standard, wide body, super wide body

Code N.	N° Holes	L	F	G	Material
411.0572	6	300	25	50	Hard anodized aluminium alloy
411.0690	6	300	25	50	Burnished steel
411.0573	6	300	25	50	Steel/countersuk holes
					Tab. 9

Fishplate for drive head

M12 exag. head screw

Plastic compound shell "V" rollers

Concentric roller

High stiffness concentric roller

Radial load 1000 N max. axial load 400 N max. - Optional lifetime lubrication Fig. 89 (end play 0.010/0.030 mm)

Concentric roller - axially free: ±1.9 mm

High stiffness eccentric roller

Radial load 1000 N max. axial load 400 N max. - Optional lifetime lubrication Fig. 90 (end play 0.010/0.030 mm)

Eccentric roller - axially free: ±1.9 mm

Radial load: 1000 N max. - lifetime lubrication

Heavy duty concentric 'V' roller

Max. load: radial 1150 N axial 650 N - Optional lifetime lubrication

Radial load: 1150 N max. - Optional lifetime lubrication

Protected concentric 'V' roller for heavy duties

Max. load: radial 1150 N axial 650 N - Optional lifetime lubrication

Wheelbase for all 'V' shaped rollers on Speedy Rail:

Wheelbase beetwen roller centers for SR250 = 302,2 mmWheelbase beetwen roller centers for SR180 = 232,2 mmWheelbase beetwen roller centers for SR120 = 176.2 mm

Max. load: radial 1150 N axial 650 N - Optional lifetime lubrication

Fig. 94

Heavy duty eccentric 'V' roller - axially free: ±1.5 mm

Protected eccentric 'V' roller for heavy duties

Max. load: radial 1150 N axial 650 N - Optional lifetime lubrication

Roller assembly with "V" rollers

Light weight roller assembly with 4 rollers

Roller assembly with 4 high stiffness rollers

The plate -cod. 411.0735 - is made in aluminium alloy with hard anodization. The rollers -cod. ROL-C080VC-BVA ROL-E080VC-BVA, carriage cod. 55.0636, - and/or different combinations from the ones shown on this page can be mounted on the above plates after consulting our technical department.

Plastic compound shell rollers

Concentric roller radial load: 1280 N max. Lifetime lubrication

Concentric roller radial load: 1280 N max. Periodical lubrication

Concentric roller radial load: 880 N max. Periodical lubrication

Lifetime lubrication cod. ROL-C040CC-BV

Fig. 105

Eccentric roller radial load: 1280 N max.

Eccentric roller radial load: 1280 N max. Periodical lubrication

ROL-E052CCC-BP-S02

Eccentric roller radial load: 880 N max.

Periodical Iubrication

S

2 Rollers light full-block assembly

55.1550

Light alloy rollers assembly with 2 $\emptyset40$ rollers. ROL-CO40CC-BP Periodical lubrication.

55.1570

Light alloy rollers assembly with 2 $\emptyset40$ rollers, ROL-CO40CC-BV Lifetime lubricated.

Compact roller assembly with plastic compound rollers

Light alloy compact roller assembly periodical lubrication version

Fig. 108

S R

Light alloy compact roller assembly lifetime lubrication version

Full-block roller assembly

55.0325

Light alloy body roller assembly with mounting holes on short sides and plastic compound rollers, periodical lubrication version, rollers ROL-C052CCL-BP, ROL-E052CCL-BP

55.0725

Lifetime lubrication version rollers ROL-C052CCL-BV, ROL-E052CCL-BV

55.0433

Light alloy body roller assembly with mounting holes on long sides and plastic compound rollers, periodical lubrication version, rollers ROL-C052CCL-BP, ROL-E052CCL-BP

55.0733

Lifetime lubrication version rollers ROL-C052CCL-BV, ROL-E052CCL-BV

Roller assembly with 4 rollers

55.0323

Roller assembly with backing plate 280x150x15. Rollers ROL-C052CCL-BP, ROL-E052CCL-BP with periodical lubrication

55.0723

Roller assembly with backing plate 280x150x15. Rollers ROL-C052CCL-BV, ROL-E052CCL-BV, lifetime lubricated

55.0324

Roller assembly with backing plate 325.5x80x15. Rollers ROL-C052CCL-BP, ROL-E052CCL-BP with periodical lubrication

55.0724

Roller assembly with backing plate 325.5x80x15. Rollers ROL-C052CCL-BV, ROL-E052CCL-BV lifetime lubricated

Narrow/wide base blindo beam roller assembly >

Narrow base roller assembly

55.0472-FIL

Equipped with 4 threaded fixing inserts Periodical lubrication

55.0472-PAS

Equipped with 4 through hole fixing inserts Periodical lubrication

Wide base roller assembly

140 4 - \vdash Ø13 38 140 22 Q \oplus 20 32 Æ 32 Ð 170 195

Equipped with 4 threaded fixing inserts Lifetime lubrication

55.0772-PAS

Equipped with 4 through hole fixing inserts Lifetime lubrication

8 Rollers blindo beam roller assembly

55.0222-FIL Equipped with 6 threaded fixing inserts

Lifetime lubrication

55.0222-PAS Equipped with 6 through hole fixing inserts Lifetime lubrication

* Lubrication nipple mounted for periodic lubrication versions only

Assemblies without baseplate have the same code followed by "SP" (i.e. 55.1565/SP)

Roller assembli reference	Roller assemblies reference		Axially free	Rollers code
PERIODICAL	ECC.	55.1565	55.3563	ROL-
LUBRICATION	CONC.	55.1566	55.3564	CO40CC-BP
LIFETIME	ECC.	55.1555	55.3553	ROL-
LUBRICATION	CONC.	55.1556	55.3554	CO40CC-BV
				Tab 10
SR120 - SR180 - SR250

Floating roller assembly with 4 rollers - short/long pivot

* Lubrication nipple mounted for periodic lubrication versions only

Notes:

The axially free version of the assemblies are normally mounted on trolleys running on parallel rails. Coupled with axially constrained assemblies provide a flexible structure able to withstand minor misallignements between runways.

Assemblies without baseplate have the same code followed by "SP" (ad es. 55.1361/SP).

Roller assemblies reference		Axially constrained	Axially free	Rollers code	
	PERIODICAL	ECC.	55.1361	55.3361	ROL-C052C-
Short	LUBRICATION	CONC.	55.1364	55.3364	CL-BP
pivot	LIFETIME	ECC.	55.1354	55.1358	ROL-C052C-
	LUBRICATION	CONC.	55.1355	55.1359	CL-BV
	PERIODICAL	ECC.	55.1363	55.3363	ROL-C052C-
Long	LUBRICATION	CONC.	55.1365	55.3365	CL-BP
pivot	LIFETIME	ECC.	55.1350	55.3350	ROL-C052C-
	LUBRICATION	CONC.	55.1351	55.3351	CL-BV

Rollers assembly, one fixed, one self adjusting

Fixed 5 concentric rollers assembly

SR120 - SR180 - SR250

Floating roller assembly with 6 rollers - short/long pivot

* Lubrication nipple mounted for periodic lubrication versions only

Notes:

The axially free version of the assemblies are normally mounted on trolleys running on parallel rails. Coupled with axially constrained assemblies provide a flexible structure able to withstand minor misallignements between runways.

Assemblies without baseplate have the same code followed by "SP" (i.e. 55.1366/SP).

Roller assemblies reference		Axially constrained	Axially free	Rollers code	
	PERIODICAL	ECC.	55.1423	55.3423	ROL-C052CCL-
Short	LUBRICATION	CONC.	55.1424	55.3424	BP
pivot	LIFETIME	ECC.	55.1425	55.3425	ROL-C052CCL-
	LUBRICATION	CONC.	55.1426	55.3426	BV
	PERIODICAL	ECC.	55.1419	55.3419	ROL-C052CCL-
Long	LUBRICATION	CONC.	55.1420	55.3420	BP
pivot	LIFETIME	ECC.	55.1421	55.3421	ROL-C052CCL-
	LUBRICATION	CONC.	55.1422	55.3422	BV

* Lubrication nipple mounted for periodic lubrication versions only

Notes:

The axially free version of the assemblies are normally mounted on trolleys running on parallel rails. Coupled with axially constrained assemblies provide a flexible structure able to withstand minor misallignements between runways.

Assemblies without baseplate have the same code followed by "SP" (i.e. 55.1366/SP)

Roller assemblies reference		Axially constrained	Axially free	Rollers code	
	PERIODICAL	ECC.	55.1366	55.3366	ROL-C052CCL-
Short	LUBRICATION	CONC.	55.1370	55.3370	BP
pivot	LIFETIME	ECC.	55.1367	55.3367	ROL-C052CCL-
	LUBRICATION	CONC.	55.1371	55.3371	BV
	PERIODICAL	ECC.	55.1368	55.3368	ROL-C052CCL-
Long	LUBRICATION	CONC.	55.1372	55.3372	BP
pivot	LIFETIME	ECC.	55.1369	55.3369	ROL-C052CCL-
	LUBRICATION		55.1373	55.3373	BV

SR120 - SR180 - SR250

Floating roller assembly with 8 rollers - short/long pivot

* Lubrication nipple mounted for periodic lubrication versions only

Notes:

The axially free version of the assemblies are normally mounted on trolleys running on parallel rails. Coupled with axially constrained assemblies provide a flexible structure able to withstand minor misallignements between runways.

Assemblies without baseplate have the same code followed by "SP" (i.e. 55.1366/SP).

Roller assemblies reference			Axially constrained	Axially free	Rollers code
	PERIODICAL	ECC.	55.1143	55.3143	ROL-C052CCL-BP
Short	LUBRICATION	CONC.	55.1144	55.3144	NUL-UUJZUUL-DI
pivot	LIFETIME	ECC.	55.1145	55.3145	ROL-C052CCL-BV
	LUBRICATION	CONC.	55.1146	55.3146	NUL-000200L-DV
	PERIODICAL	ECC.	55.1147	55.3147	ROL-C052CCL-BP
Long	LUBRICATION	CONC.	55.1148	55.3148	NUL-UUUZUUL-DF
pivot	LIFETIME	ECC.	55.1149	55.3149	ROL-C052CCL-BV
	LUBRICATION	CONC.	55.1150	55.3150	NUL-GUJZUUL-DV

Assembling diagram for rigid mounted rack

SR120 - SR180 - SR250

Standard racks

Straight toothed hardened rack

Cod.	С	D	d	E	F	н	L	N	Р	Mod.
411.1489	10	11	7	19,41	7	20	998,82	5	240	2
411.1491	10	11	7	42,07	7	20	2004,14	9	240	2
411.1499	17	14	9	19,41	9	30	998.82	5	240	3
411.1501	17	14	9	38,92	9	30	1997,84	9	240	3
411.1509	20,5	17	11	22,55	11	40	1005,10	5	240	4
411.1511	20.5	17	11	45,21	11	40	2010,42	9	240	4
										Tab. 15

S R

indexing	rack	mounting	g componen	Its

Rack	Mounting plates	Dovetails	Inserts
m2	SR-16, SR-22, SR-54, SR-62	SR-15, SR-22, SR-29	SR-53
m3	SR-30, SR-54, SR-62	SR-29	SR-53
m4	SR-30, SR-54, SR-62	SR-29	SR-53

Tab. 16

Standard scrapers >

Scraper for floating and full-block assemblies

Scraper for blindo beam roller assemblies

Fig. 130

Scraper for compact

Scraper for light floating rollers assemblies

Note:

All roller assemblies are equipped with the relate scrapers.

Speedy Rail 180 // 🗸

Wide body multi groove speedy rail guide and specifications

Surface quadratic moment: X-X axis = 10.291.100 mm4 / Y-Y axis = 1.278.700 mm4.

Max. manufacturing tolerances = ± 0.30 mm across opposite rolling surfaces.

Max. angular distorsion = $\pm 20^{\circ}/m$.

Linear mass = 10.2 Kg/m.

Max. linear distorsion = ± 0.7 mm/m.

Standard lengths: 3000-3500-4000-4500-5000-5500-6000-6500-7000-7500 mm.

External surface: deep hard anodizing

Roller assemblies and components

Wide body multi groove speedy rail guide and specifications

Speedy Rail 180 with plain ends: SR180-T Speedy Rail 180 with drilled ends: SR180-F

Note:

Drillings on the bar end are required as a safety measure whith end-to-end joining in moving rails.

Fig. 135

Wide body multi groove speedy rail guide (SR180) uses the same dovetails, plates, fishplates and joining components of speedy rail standard

А	В	C	D	E	Material	N° Holes	Cod.
496	60	M4	8	16	D	9	411.2534
496	60	M5	8	16	Burnished steel	9	411.2533
496	80	M6	8	16	01001	9	411.3633
							Tab. 17

Insert							
А	В	C	D	E	Material	N° Holes	Cod.
-	-	M4	-	-		1	411.1349
-	-	M5	-	-	Zinc plated	1	411.1351
-	-	M6	-	-	steel	1	411.1352
-	-	M8	-	-		1	411.1353
							Tab. 18

(SR120 section) see page SR-29, SR-30, SR-31.

Components for wide body multi groove Speedy Rail guide

Drive head

Bolt for drive head

Fishplate for mod.2 Rack mounting on SR180, SR250 T grooves

Roller assembly with "V" shaped rollers

55.1180

Heavy duty roller assembly with 4 rollers, two ROL-C090VC-BS and two ROLE090VC-BS.

Roller assembly with 4 rollers

55.0713

Roller assembly with backing plate 336x150x15 rollers with lifetime lubrication

55.0513

Roller assembly with backing plate 336x150x15 rollers with periodical lubrication

55.0740

Roller assembly with backing plate 381.5x80x15 rollers with lifetime lubrication

55.0514

Roller assembly with backing plate 381.5x80x15 rollers with periodical lubrication

* Lubricator nipple mounted for periodic lubrication versions only

Notes:

The complete pairing kit comes with one eccentric and one concentric roller assembly mounted on a backing plate. The concentric roller assembly should take the heavier load. For trolley on 2 parallel guides use on one guide axially free roller assemblies (\pm 4mm).

Pairing kits are available with two roller assemblies having the same number of rollers. For different combinations (i.e. upper assembly with 6 rollers and lower assembly with 4 rollers, two eccentric rollers assemblies) please order the assemblies separately, without baseplate and add the backing plate shown in this page. However we suggest to verify always with our technical department prior to ordering.

Pivot type	Lubrication type	Axially constrained	Axially free
Short	Periodical	55.1380	55.3380
pivot	Lifetime	55.1381	55.3381
Long	Periodical	55.1382	55.3382
pivot	Lifetime	55.1383	55.3383
			Tah 10

Tab. 19

Backing plate for floating roller assemblies

Backing plate - Material: hard anodized aluminium alloy

Speedy Rail 250 // 🗸

Super wide body multi groove Speedy Rail guide and specifications

Surface quadratic moment X-X axis = 27.345.460 mm4 / Y-Y axis = 4.120.150 mm4.

Max. manufacturing tolerances = ± 0.65 mm across opposite rolling surfaces.

Max. angular distorsion = $\pm 30^{\circ}/m$.

Linear mass = 15.20 Kg/m.

Max. linear distorsion = ± 0.5 mm/m.

Standard lengths: 3000-3500-4000-4500-5000-5500-6000-6500-7000-7500 mm.

External surface: deep hard anodizing

Roller assemblies and components

Superwide body multi groove Speedy Rail guide and specifications

Speedy Rail 250 with plain ends: SR250-T Speedy Rail 250 with drilled ends: SR250-F

Note:

Drillings on the bar end are required as a safety measure whith end-to-end joining in moving rails.

Super wide body multi groove speedy rail guide (SR250) uses the same dovetails, plates, fishplates and joining components of speedy rail standard (sr 120m section) see pages SR-29, SR-30, SR-31. Special plates, 411.0960, are also available for end-to-end joining in heavy duty applications.

* Particularly for side grooves the same inserts for SR180 (pag.SR-53) are used.

Steel fishplates for end to end joining

Components for super wide body Speedy Rail guide >

Fishplate for m2 Rack mounting on, SR180, SR250 T grooves

m2 straight toothed For rack mounting plate m2 use insert 411.1352

Fishplate for m3 and m4 rack mounting on dovetail grooves

Fig. 155

Roller assembly with "V" shaped rollers

55.0808

Roller assembly with 4 rollers, two ROL-C090VC-BS and two ROL-E090VC-BS

Mechanical and technological components specifications

Guides	Accessories	Material	Tensile strength
Speedy Rail SR 35 Speedy Rail SR C 48 Speedy Rail Mini SR 60 Speedy Rail Middle SR 90 Speedy Rail Standard SR 120 Speedy Rail Wide Body multiple grooves SR 180 Speedy Rail Super Wide Body Multiple Grooves SR 250	Dovetails Fishplates	Aluminum Aloy	Tensile strength: $R = 245 \text{ N/mm}^2$ Yield stress: $S = 195 \text{ N/mm}^2$ Elongation: $10\% \div 13\%$ Modulus of elasticity: $E=70000 \text{ N/mm}^2$ $G=26000 \text{ N/mm}^2$ Mass density: 2,7 kg/dm ³ Coefficient of expansion: K=23x10-6 mm/mm°C

Tab. 20

Components	Material	Tensile strength
Base plates Rocking arms Compact rollers assembly body	Aluminum	Tensile strength: $R = 275 \text{ N/mm}^2$ Yield stress: $S = 200 \text{ N/mm}^2$ Elongation: $10\% \div 13\%$ Modulus of elasticity: $E=70000 \text{ N/mm}^2$ $G=26000 \text{ N/mm}^2$ Mass density: 2,7 kg/dm ³
Monoblock roller assembly case Full-block roller assembly case	Alloy	Tensile strength: R = 225 N/mm ² Yield stress: S = 142 N/mm ² Elongation: $3\% \div 5\%$ Modulus of elasticity: E=70000 N/mm ² G=26000 N/mm ² Mass density: 2,7 kg/dm ³

Tab. 22

Treatments on all light alloy components

Heat treatment	Age hardening
Surface treatment	Surface hardening: Low temperature deep anodizing to give a surface hardness of $600 \div 700 \text{ HV}$ Surface layer depth: $50 \div 60 \text{ micron} (0.050 \div 0.060 \text{ mm})$ for rails, $25 \div 35 \text{ micron} (0.025 \div 0.035 \text{ mm})$ for supports bodies and plates. Chemical composition of surface layer: $Al_2 O_3$ Fusion temperature of surface layer: 2100° C Surface layer electric resistance at 20°C : $4x10^{15} \text{ Ohm/cm/cm}^2$ Dielectric constant: approx. 7.5 Puncture voltage of surface layer: 1500 V

Rollers

Speedy Rail system

Rollers are manufactured with a steel shaft, high quality ball-needle bearings, rubber seals labyrinth.

The external surface of the roller is machined with a slightly convex profile,

finished with a sintered plastic compound having the following properties:

Tensile strength:	85 N/mm ²
Rockwell hardness:	120 R
Melting point:	+ 220 °C
Max. continuous working temperature:	+80°C
Min. continuous working temperature:	- 20°C

Chemical resistance: excellent to mineral and organic oils; good to basic solutions; fairly good to acid solutions.

We always recommend a preliminary test for the rollers in the actual working environment.

Roller assemblies

Roller assemblies with four (4) rollers have the two inner rollers mounted on a plain, concentric sleeve while the outer ones have an eccentric sleeve. This setup allows the proper adjustments to compensate dimensional tolerances on the rail. Two roller assemblies have one roller with an eccentric sleeve and the other with a concentric setup. Floating roller assemblies: all the rollers on this type of support have a concentric sleeve.

The adjustments are made possible by the pivot settings (hub), which comes either with an eccentric or concentric setup.

Custom configuration for roller assemblies are available upon request.

Rollers adjustments

Adjusting the rollers on a single section rail requires the rollers in a position that allows them to touch the running surface with no play - slightly pre-loaded- A different and more accurate setting is required when the runway is assembled with multiple sections.

The rollers setting must leave $0.15 \div 0.20$ mm backslack (play) from the rail –Use a feeler gauge for best results- The setting requirement is determined by the dimensional tolerances on the rail sections.

Torque settings

Bolt purpose torque:

M6	(fixing scrapers)	10 Nm					
M8	(fixing assemblies)	25 Nm					
M10	(fixing assemblies)	45 Nm					
M12	(dovetails & fishplates)	55 Nm					
M16	(fixing rollers)	75 Nm					
Drillings of the end bars:							

this are made in order to create a security connection for two or more moving rails that have an end to end joining, through the shaft of the special screws that are used for fixing the fishplate and the dovetails. This additional connection is not a guarantee for the precision but has got the aim to avoid injuries in the case that the moving rails unhook.

Scrapers

Are manufactured from a sintered compound, self lubricating, having a low friction coefficient. All the roller assemblies come with the scrapers. The purpose of this item is to keep foreign bodies out of the rollers. Scrapers shall never be set to slide on the rail.

Drive head

For Speedy Rail profiles. Machined from a hard polymer rubber molding -Shore A hardness $90 \div 95$ - Normally mounted on the bar ends when the system has a rail that moves in and out the roller assemblies. This rubber end piece allows the rail to be easily guided into the roller assemblies. They are equipped with mounting and adjustment holes so that a 0.2 mm minimum clearance can be applied.

For application environments with an excessive pollution or dust use the mobile brush assembly.

Lubrication

There is no need to lubricate our Speedy Rail profiles. It provides continuous lubrication and keeps the rail clean.

Rollers: standard rollers with regular maintenance/greasing schedule have its own grease nipple. Please use grade 3 grease for working temperature of $10^{\circ}C \div 60^{\circ}C$.

Grade 2 grease is required when the working temperature drop below 10°C. Lubricate every 5-6 months.

For the "lifetime" lubrication version, the rollers are supplied with a high tech grease.

The grease nipples are removed from the assemblies since this configuration does not require any periodic lubrication.

Life testing and speed

Speedy rail and system with plastic shell rollers

The max applicable load, stated in the description of each roller of the Speedy Rail systems, is determined depending on the characteristics of the plastic compound shell. The cylindrical rollers of Speedy Rail system can be used with translation speed up to 15 metres/second and with accelerations and decelerations up to 10 metres/sec2. For Speedy Rail and Speedy Rail C 48 systems with "V" shaped and for Speddy Rail 35 plastic compound rollers, the max translation speed is of 8 metres/sec2. For higher dynamics please contact our technical department. For all roller types the working temperature limits are -20°C and +80°C.

The rollers with plastic compound shell do not damage themselves and do not damage the rails where the invert direction, even in presence of high accelerations and decelerations. Speedy Rail C 48 and Speddy Rail 35 systems has good performance and excellent life even in presence of dust. With stresses on the rollers within the max values stated on the catalogue, the Speedy Rail systems enable a life time of more than 80.000 km for the cylindrical rollers and 50.000 km for the systems with "V" shaped rollers. The life can be lower due to excessive presence of dust or pollutants.

Summary table Speedy Rail guides

Profile type and code N°	Simple profiles mechanical and specifications	Surface quadratic moment I (X) mm4	Surface quadratic moment I (Y) mm4	Section modulus W (X) mm3:	Section modulus W (Y) mm3:	Section mm2	Distance d mm: (Roller contact axis)	Linear mass t kg/mt
SR 35 SIMP - T SIMP - F	X Y X	17.779	3.665	1016	118	203	/	0.60
SR C 48 CR48 - D CR48 - T CR48 - F		152.026	36.823	6334	2045	526	28.26	1.42
SR Mini (60) SR060 - T SR060 - F	X Y	138.600	18.000	4.620	1.800	470	29	1,27
SR Middle (90) SR090 - T SR090 - F	× Y Y Y Y	630.000	76.500	14.250	5.170	965	39,6	2,6
SR Standard (120) SR120 - T SR120 - F	× × ·Y	2.138.988	259.785	35.650	12.989	1.645	56,1	4,4
SR Wide Body (180) SR180 - T SR180 - F	Y A C X Y C C X Y C C X Y C C C Y	10.291.100	1.278.700	114.345	42.620	3.730	95,7	10,2
SR Super Wide body (Speedy Rail 250) SR250 - T SR250 - F	Y OCLUS X V V V V	27.345.460	4.120.150	218.760	103.000	5.609	113.95	15.2

Loads on a 4 'V' rollers trolley

Rollers load with force 'P' applied on the rail axle

Rollers load with 'P1' force applied at 'L' distance (mm) from rail centerline

$$F = P_1 \cdot \left(\frac{1}{2 \cdot \sqrt{2}}\right) (N) \qquad F_1 = \frac{P_1 \cdot L}{2 \cdot d} (N) \qquad F_r = F_a = \frac{F + F_1}{\sqrt{2}} (N) \qquad F_r = Radial load (N) \\F_a = Axial load (N)$$
Fig. 159

Important: the load on most loaded rollers must be, for each roller type, less or equal to the corresponding rated load on the catalogue.

$$F' = F'' = \frac{F}{\sqrt{2}}$$

- A, B Concentric rollers C, D Eccentric rollers
- P, P_1 = Applied forces (N)
- $F_r = Radial load (N)$
- $F_a = Axial load (N)$

Rollers load with force 'P' applied on the rail axle

$$F_{r} = \frac{P}{2} (N)$$

$$F_{a} = 0 (N)$$

$$F_{a} = 0 (N)$$

$$F_{a} = 0 (N)$$

$$F_{r} = Radial load (N)$$

$$F_{a} = Axial load (N)$$
Fig. 162

Rollers load with 'P_1' force applied at 'L' Distance (mm) from rail centerline

$$F = P_1 \cdot \frac{1}{2 \cdot \sqrt{2}} \quad (N) \qquad F_1 = \frac{P_1 \cdot L}{2 \cdot d} \quad (N) \qquad F_r = \sqrt{2} \quad F_r + \frac{F_1}{\sqrt{2}} \quad (N) \qquad F_a = \frac{F_1}{\sqrt{2}} \quad (N) \qquad A, B \quad Concentric rollers \\ C, D \quad Eccentric rollers \\ P, P_1 \quad = \text{Applied forces (N)} \\ F_r \quad = \text{Radial load (N)} \\ F_a \quad = \text{Axial load (N)} \end{cases}$$
Fig. 163

Important: the load on most loaded rollers must be, for each roller type, less or equal to the corresponding rated load on the catalogue.

Trolley on single rail horizontal

The rollers with concentric sleeve are mounted where there is the highest load and the ones with eccentric sleeve on the opposite end.

All 'F' values must include the dynamic component obtained by: Inertia force = mass (kg) x acceleration (mt/s^2).

Roller-guide load verification

$$F \text{ Ass } \Rightarrow \frac{F_y}{4} + \frac{F_y \cdot X + F_x \cdot Y_1}{2 \cdot L} + \frac{F_z \cdot Y + F_y \cdot Z}{2 \cdot d \cdot 1.41}$$

$$F \text{ Rad } \Rightarrow \frac{F_z}{2} + \frac{F_y}{4} + \frac{F_z \cdot X - F_x \cdot Z_1}{L} + \frac{F_z \cdot Y + F_y \cdot Z}{2 \cdot d \cdot 1.41}$$

Important: the load on most loaded rollers must be, for each roller type, less or equal to the corresponding rated load on the catalogue.

Loads on twin 4 'V' rollers trolleys

Trolley on double rail horizontal

When assembling lines with parallel rail and long strokes it would be wise to use axially-free roller assemblies on one of the rails in order to withstand minor misalignments due either to assembly or maintenance errors. All 'F' values must include the dynamic component obtained by: Inertia Force = mass (kg) x acceleration (mt/s²).

Roller-guide load verification

$$F \text{ Rad} \implies \frac{F_z}{4} + \frac{F_x \cdot Z + F_z \cdot X}{2 \cdot L}$$
Fig. 167

Important: the load on most loaded rollers must be, for each roller type, less or equal to the corresponding rated load on the catalogue.

Loads on a 4 'V' rollers vertical trolley

Trolley on single vertical rail

The rollers with concentric sleeve are mounted where there is the highest load and the ones with eccentric sleeve on the opposite end.

All 'F' values must include the dynamic component obtained by: Inertia Force = mass (kg) x acceleration (mt/s²).

Roller-guide load verification

$$F \text{ Ass } \Rightarrow \frac{F_y}{4} + \frac{F_y \cdot Z + F_z \cdot Y_1}{2 \cdot L} + \frac{F_y \cdot X - F_x \cdot y}{2 \cdot d \cdot 1.41} F \text{ Rad } \Rightarrow \frac{F_z \cdot X_1 + F_x \cdot Z}{L} + \frac{F_x \cdot Y - F_y \cdot X}{2 \cdot d \cdot 1.41} + \frac{F_y}{4} + \frac{F_z}{2}$$

Important: the load on most loaded rollers must be, for each roller type, less or equal to the corresponding rated load on the catalogue.

Cilindrical roller loads

Rollers load with 'P' force applied on the rail axle

Rollers load with $'P_1'$ force applied at 'L' distance (mm) from rail centerline

Important: the load on most loaded rollers must be, for each roller type, less or equal to the corresponding rated load on the catalogue.

Rollers load with 'P' force applied on the rail axle

$$F = P \cdot \left(\frac{1}{2 \cdot \sqrt{2}}\right) (N) \qquad F_1 = 0 \quad (N) \qquad F_r = F \quad (N) \qquad P, P_1 = Applied \text{ forces } (N) \\ F_r = Radial \text{ load } (N) \qquad F_r = Radial \text{ load } (N)$$

Rollers load with 'P' force applied at 'L' distance (mm) from rail centerline

$$F = P \cdot \left(\frac{1}{2 \cdot \sqrt{2}}\right) (N) \qquad F_1 = \frac{P \cdot L}{2 \cdot d} (N) \qquad F_r = F + F_1 (N) \qquad P, P_1 = \text{Applied forces (N)}$$
$$F_r = Radial \text{ load (N)}$$

Fig. 175

Important: the load on most loaded rollers must be, for each roller type, less or equal to the corresponding rated load on the catalogue.

Load capacities for C Rollers assemblies

Fig. 176

Code	N° of rollers	Type of roller	Roller configurati- on*4	C _{orad} [N]	C _{oax} [N]		Mx*1 [Nm]			M _{zs} *3 M _{zd} *3 [Nm] [Nm]
55.0222-FIL	8	ROL-C052CCC-BV	4+4	2620.4	3620.4		SpeedyRail 180	SpeedyRail 250	200.6	290 G
00.0222-FIL	0	ROL-E052CCC-BV ROL-C052CCC-BV	4+4	3620,4	3020,4	143,6	-		289,6	289,6
55.0222-PAS	8	ROL-E052CCC-BV	4+4	3620,4	3620,4	143,6	-	-	289,6	289,6
55.0323	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0324	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0325	2	ROL-C052CCL-BP ROL-E052CCL-BP	1+1	1810,2	905,1	71,8	122,5	145,9	0,0	0,0
55.0411	4	ROL-C052CCC-BP ROL-E052CCC-BP	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0433	2	ROL-C052CCL-BP ROL-E052CCL-BP	1+1	1810,2	905,1	71,8	122,5	145,9	0,0	0,0
55.0472-FIL	4	ROL-C052CCC-BP ROL-E052CCC-BP	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0472-PAS	4	ROL-C052CCC-BP ROL-E052CCC-BP	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0513	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	1810,2	1810,2	-	122,5	-	0,0	0,0
55.0514	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	1810,2	1810,2	-	122,5	-	0,0	0,0
55.0604	2	ROL-C052CCC-BP ROL-E052CCC-BP	1+1	1810,2	905,1	71,8	122,5	145,9	0,0	0,0
55.0711	4	ROL-C052CCC-BV ROL-E052CCC-BV	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0713	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	1810,2	1810,2	-	122,5	-	0,0	0,0
55.0723	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0724	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0725	2	ROL-C052CCL-BV ROL-E052CCL-BV	1+1	1810,2	905,1	71,8	122,5	145,9	0,0	0,0
55.0733	2	ROL-C052CCL-BV ROL-E052CCL-BV	1+1	1810,2	905,1	71,8	122,5	145,9	0,0	0,0
55.0740	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	1810,2	1810,2	-	122,5	-	0,0	0,0

*1 For sliders with rollers only on one raceway, the Mx moment refers to two sliders mounted on both opposite raceways of the rail.

*2 The My moment can only be applied with two sliders mounted on both opposite raceways of the rail.

Therefore, for sliders with rollers only on one raceway, the values in the table refer to two sliders.

*3 For sliders with rollers only on one raceway, the Mz moment refers to two sliders mounted on both opposite raceways of the rail.

*4 For sliders with rollers only on one raceway, the codes show the roller type on each side of the assembly. For sliders with rollers on on both raceways of the rail, the codes show the roller type on the top raceway and the bottom raceway.

Tab. 24

Code	N° of	Type of roller	Roller configurati- on*4	C _{orad} [N]	C _{oax} [N]	Mx*1 [Nm]			My*2	M_* ³ M_ ^{*3}
	rollers					SpeedyRail 120	SpeedyRail 180	SpeedyRail 250	[Nim]	[Nm] [Nm]
55.0772-FIL	4	ROL-C052CCC-BV ROL-E052CCC-BV	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0772-PAS	4	ROL-C052CCC-BV ROL-E052CCC-BV	2+2	1810,2	1810,2	71,8	-	-	0,0	0,0
55.0794	2	ROL-C052CCC-BV ROL-E052CCC-BV	1+1	1810,2	905,1	71,8	122,5	145,9	0,0	0,0
55.0930	6	ROL-C052CCL-BP ROL-E052CCL-BP	3+3	5430,6	2715,3	215,4	367,5	437,6	597,4	644,4
55.1135	5	ROL-C052CCL-BP ROL-E052CCL-BP	3+2	3620,4	1810,2	215,4	367,5	437,6	642,6	642,6
55.1136	5	ROL-C052CCL-BV ROL-E052CCL-BV	3+2	3620,4	1810,2	215,4	367,5	437,6	642,6	642,6
55.1143	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	7240,8	3620,4	287,2	490,0	583,4	0,0	0,0
55.1144	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	7240,8	3620,4	287,2	490,0	583,4	0,0	0,0
55.1145	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	7240,8	3620,4	287,2	490,0	583,4	0,0	0,0
55.1146	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	7240,8	3620,4	287,2	490,0	583,4	0,0	0,0
55.1147	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	7240,8	3620,4	287,2	490,0	583,4	0,0	0,0
55.1148	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	7240,8	3620,4	287,2	490,0	583,4	0,0	0,0
55.1149	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	7240,8	3620,4	287,2	490,0	583,4	0,0	0,0
55.1150	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	7240,8	3620,4	287,2	490,0	583,4	0,0	0,0
55.1350	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	3620,4	1810,2	143,6	245,0	291,7	0,0	0,0
55.1351	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	3620,4	1810,2	143,6	245,0	291,7	0,0	0,0
55.1354	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	3620,4	1810,2	143,6	245,0	291,7	0,0	0,0
55.1355	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	3620,4	1810,2	143,6	245,0	291,7	0,0	0,0
55.1358	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.1359	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.1361	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	3620,4	1810,2	143,6	245,0	291,7	0,0	0,0
55.1363	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	3620,4	1810,2	143,6	245,0	291,7	0,0	0,0
55.1364	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	3620,4	1810,2	143,6	245,0	291,7	0,0	0,0
55.1365	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	3620,4	1810,2	143,6	245,0	291,7	0,0	0,0
55.1366	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1367	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1368	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1369	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1370	6	ROL-C052CCL-BP ROL-E052CCL-BP e raceway, the Mx moment r	4+2	3620,4		287,2	490,0	583,4	0,0	0,0

*2 The My moment can only be applied with two sliders mounted on both opposite raceways of the rail. Therefore, for sliders with rollers only on one raceway, the values in the table refer to two sliders.

*3 For sliders with rollers only on one raceway, the Mz moment refers to two sliders mounted on both opposite raceways of the rail.

*4 For sliders with rollers only on one raceway, the codes show the roller type on each side of the assembly.

For sliders with rollers on on both raceways of the rail, the codes show the roller type on the top raceway and the bottom raceway.
Code	N° of	Type of	Roller configurati-	C _{orad}	C _{oax}		Mx*1 [Nm]		My*2	M _{zs} * ³ M _{zd} * ³
Code	rollers	roller	on*4	[N]	[N]	SpeedyRail 120	SpeedyRail 180	SpeedyRail 250	[Nm]	[Nm] [Nm]
55.1371	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1372	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1373	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1380	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	3620,4	3620,4	-	245,0	-	0,0	0,0
55.1381	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	3620,4	3620,4	-	245,0	-	0,0	0,0
55.1382	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	3620,4	3620,4	-	245,0	-	0,0	0,0
55.1383	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	3620,4	3620,4	-	245,0	-	0,0	0,0
55.1419	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1420	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1421	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1422	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1423	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1424	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1425	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1426	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	1810,2	287,2	490,0	583,4	0,0	0,0
55.1550	2	ROL-CO40CC-BP	1+1	1244,5	622,3	49,4	84,2	100,3	0,0	0,0
55.1555	4	ROL-CO40CC-BV	2+2	2489,0	1244,5	98,7	168,4	200,6	0,0	0,0
55.1556	4	ROL-CO40CC-BV	2+2	2489,0	1244,5	98,7	168,4	200,6	0,0	0,0
55.1565	4	ROL-CO40CC-BP	2+2	2489,0	1244,5	98,7	168,4	200,6	0,0	0,0
55.1566	4	ROL-CO40CC-BP	2+2	2489,0	1244,5	98,7	168,4	200,6	0,0	0,0
55.1570	2	ROL-CO40CC-BV	1+1	1244,5	622,3	49,4	84,2	100,3	0,0	0,0
55.3143	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	7240,8	0,0	0,0	0,0	0,0	0,0	0,0
55.3144	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	7240,8	0,0	0,0	0,0	0,0	0,0	0,0
55.3145	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	7240,8	0,0	0,0	0,0	0,0	0,0	0,0
55.3146	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	7240,8	0,0	0,0	0,0	0,0	0,0	0,0
55.3147	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	7240,8	0,0	0,0	0,0	0,0	0,0	0,0
55.3148	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	7240,8	0,0	0,0	0,0	0,0	0,0	0,0
55.3149	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	7240,8	0,0	0,0	0,0	0,0	0,0	0,0
55.3150	8	ROL-C052CCL-BV ROL-E052CCL-BV ne raceway, the Mx moment r	4+4	7240,8	0,0	0,0	0,0	0,0	0,0	0,0 Tab. 26

*1 For sliders with rollers only on one raceway, the Mx moment refers to two sliders mounted on both opposite raceways of the rail.
*2 The My moment can only be applied with two sliders mounted on both opposite raceways of the rail. Therefore, for sliders with rollers only on one raceway, the values in the table refer to two sliders.
*3 For sliders with rollers only on one raceway, the Mz moment refers to two sliders mounted on both opposite raceways of the rail.
*4 For sliders with rollers only on one raceway, the codes show the roller type on each side of the assembly. For sliders with rollers on on both raceways of the rail, the codes show the roller type on the top raceway and the bottom raceway.

Code	N° of rollers	Type of roller	Roller configurati-	C _{orad} [N]	C _{oax} [N]		Mx* ¹ [Nm]		My*² [Nm]	M _{zs} * ³ M _{zd} * ³ [Nm] [Nm]
	Tomoro	101101	0 n *4	լոյ	[N]	SpeedyRail 120	SpeedyRail 180	SpeedyRail 250	fixini	լուղ լուղ
55.3350	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3351	4	ROL-C052CCL-BV ROL-E052CCL-BV	2+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3361	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3363	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3364	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3365	4	ROL-C052CCL-BP ROL-E052CCL-BP	2+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3366	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3367	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3368	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3369	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3370	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3371	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3372	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3373	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3380	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	3620,4	0,0	-	0,0	-	0,0	0,0
55.3381	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	3620,4	0,0	-	0,0	-	0,0	0,0
55.3382	8	ROL-C052CCL-BP ROL-E052CCL-BP	4+4	3620,4	0,0	-	0,0	-	0,0	0,0
55.3383	8	ROL-C052CCL-BV ROL-E052CCL-BV	4+4	3620,4	0,0	-	0,0	-	0,0	0,0
55.3419	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3420	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3421	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3422	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3423	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3424	6	ROL-C052CCL-BP ROL-E052CCL-BP	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3425	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3426	6	ROL-C052CCL-BV ROL-E052CCL-BV	4+2	3620,4	0,0	0,0	0,0	0,0	0,0	0,0
55.3553	4	ROL-CO40CC-BV	2+2	2489,0	0,0	0,0	0,0	0,0	0,0	0,0
55.3554	4	ROL-CO40CC-BV	2+2	2489,0	0,0	0,0	0,0	0,0	0,0	0,0
55.3563	4	ROL-CO40CC-BP	2+2	2489,0	0,0	0,0	0,0	0,0	0,0	0,0
55.3564	4	ROL-CO40CC-BP	2+2	2489,0	0,0	0,0	0,0	0,0	0,0	0,0

Tab. 27

*1 For sliders with rollers only on one raceway, the Mx moment refers to two sliders mounted on both opposite raceways of the rail.
*2 The My moment can only be applied with two sliders mounted on both opposite raceways of the rail. Therefore, for sliders with rollers only on one raceway, the values in the table refer to two sliders.
*3 For sliders with rollers only on one raceway, the Mz moment refers to two sliders mounted on both opposite raceways of the rail.
*4 For sliders with rollers only on one raceway, the codes show the roller type on each side of the assembly. For sliders with rollers on on both raceways of the rail, the codes show the roller type on the top raceway and the bottom raceway.

Load capacities for V Rollers assemblies

Fig. 177

Code	N° of rollers	Type of roller	Roller configurati- on*4	C _{orad} [N]	C _{oax} [N]	Mx*1 [Nm]	My*² [Nm]	M_ ^{x3} [Nm]	M_ ^{x3} [Nm]	Rail type
55.0372	3 rollers	ROL-C032VC-B ROL-E032VC-B	2+1	540,0	146,0	3,0	7,3	13	,5	Speedy rail 60
55.0375	4 rollers	ROL-C032VC-B ROL-E032VC-B	2+2	540,0	292,0	6,0	14,6	27	,0	Speedy rail 60
55.0557	4 rollers	ROL-C080VC-B ROL-E080VC-B	2+2	1400,0	622,0	24,7	77,8	17	5,0	Speedy rail 120
55.0558	4 rollers	ROL-C080VC-BR ROL-E080VC-BR	2+2	2000,0	1143,0	45,3	142,9	25),0	Speedy rail 120
55.0605	3 rollers	ROL-C050VC-B ROL-E050VC-B	2+1	800,0	160,0	3,3	9,6	24	,0	Speedy rail 60
55.0606	4 rollers	ROL-C050VC-B ROL-E050VC-B	2+2	800,0	320,0	6,6	19,2	48,0		Speedy rail 60
55.0636	4 rollers	ROL-C080VC-BVA ROL-E080VC-BVA	2+2	2000,0	0,0	0,0	0,0	25	0,0	Speedy rail 120
55.0665	3 rollers	ROL-C062VC-B ROL-E062VC-B	2+1	900,0	225,0	6,3	18,0	36	,0	Speedy rail 90
55.0666	4 rollers	ROL-C062VC-B ROL-E062VC-B	2+2	900,0	450,0	12,6	36,0	72	.,0	Speedy rail 90
55.0759	3 rollers	ROL-C062VC-BH ROL-E062VC-BR	2+1	1400,0	400,0	11,2	32,0	56	,0	Speedy rail 90
55.0760	4 rollers	ROL-C062VC-BH ROL-E062VC-BR	2+2	1400,0	800,0	22,4	64,0	11	2,0	Speedy rail 90
55.0808	4 rollers	ROL-C090VC-BS ROL-E090VC-BS	2+2	2300,0	1661,0	133,8	257,5	35	6,5	Speedy rail 250
55.0831	4 rollers	ROL-C062VC-BA ROL-E062VC-BA	2+2	1400,0	0,0	0,0	0,0	112	,00	Speedy rail 90
55.1060	3 rollers	ROL-CO31WC-X ROL-EO31WC-B	2+1	540,0	160,5	2,1	5,1	9	5	Speedy rail C 48
55.1064	4 rollers	ROL-CO31WC-X ROL-EO31WC-B	3+1	642,6	160,5	2,1	7,7	18,9	9,5	Speedy rail C 48
55.1069	4 rollers	ROL-CO31WC-X ROL-EO31WC-B	2+2	540,0	291,9	4,1	7,7	18	,9	Speedy rail C 48
55.1180	4 rollers	ROL-C090VC-BS ROL-E090VC-BS	2+2	2300,0	1661,0	112,4	249,2	34	5,0	Speedy rail 180

*1 For sliders with rollers only on one raceway, the Mx moment refers to two sliders mounted on both opposite raceways of the rail.

*2 The My moment can only be applied with two sliders mounted on both opposite raceways of the rail.

Therefore, for sliders with rollers only on one raceway, the values in the table refer to two sliders.

*3 For sliders with rollers only on one raceway, the Mz moment refers to two sliders mounted on both opposite raceways of the rail.
*4 Being a single bearing configuration axial load applies if more than one slider is assembled in the rail to avoid bearing movement.

Tab. 28

User suggestions

When and how to use speedy rail:

When a linear transfer system requires one or more of the following features:

- Lightweight
- Quiet
- Resistant to dust and chemical agents
- Easy to assemble
- Interchangeable

How:

The $\textbf{Speedy Rail}^{\texttt{@}}$ beam moves within fixed roller assemblies.

The lightness of the beam offers power and energy cost-savings, increasing the acceleration and speed. Side arm and/or manipulators can be fitted on the moving beam.

The **Speedy Rail**[®] beam is static and the roller assemblies, connected to a frame, are moving. Either with a static or moving beam, the movement can be realized through several means such as rack-pivot coupling, belts, chain, pneumatic or hydraulic cylinder. For preassembled modular units will you please refer to the catalogue of Rollon modules and portals.

Calculations data:

Important calculation factors to consider:

- 1) Maximum beam deflection under the load action
- 2) Maximum roller stress

1) Elastic deflection

Usually in a transfer system the deformations derived from elastic deflection are not a disturbing element.

2) Roller stress

Considering a roller assembly with two cylindric plastic compound rollers, the maximum load on the highest stressed roller should not exceed 128 daN. With the following formula it's possible to calculate the load on the most stressed roller.

$$\mathsf{F} = \frac{\mathsf{P}.\mathsf{a}}{\mathsf{d}} + \frac{\mathsf{P}}{\sqrt{2}}$$

If the value is more than 128 daN, it will be necessary to provide either more supports or only one self-aligning roller assembly with 8 - 10 or 12 rollers, so than the "F" value, divided by the number of rollers on the specified point of application will be equal or less than 128 daN. Compared to steel beams and roller assemblies, the **Speedy Rail**[®] surface treatment and plastic compound shells on the rollers allows the utilization of Rollon components in high speed and high accelerations systems. These benefits remove typical damages due to wear normally present in metal to metal sliding situations. When building a system with one single segment of **Speedy Rail**[®] section, it is possible to slightly pre-load the rollers.

Do not pre-load rollers on a system with a rail composed of 2 or more segments.

Power required to drive a trolley or bar

The following calculations are true in a system without overloads generated either by misalignement or an incorrect assembly. The following sliding friction factors are approximate with excess.

Terminology and dimensional units

M [kg]	moving mass
n _r	number of moving rollers
C _r = 100 Nmm	internal max resisting torque for each roller
a [m/s²]	moving mass acceleration
g [m/s²]	gravity acceleration
$f_{cc} = 0.05$	drive resisting coefficient of plastic compound rollers
$f_{vc} = 0.065$	drive resisting coefficient of 'V' shaped plastic compound rollers
F [N]	drive resisting force
V [m/s]	max traverse speed
N [W]	power
d [mm]	average roller diameter

Calculations

traverse

	resisting force	$F = Ma + Mgf + \frac{2n_rC_r}{d}$	max power	N = F V
				Fig. 178
VE	ertical lift			

resisting force	$F = M a + M g (1 + f) + \frac{2 n_r C_r}{d}$	max power	N = F V
			Fig. 179

S R

Thermal expansion of profiles, simple and compound

All profiles specifications are located on pages SR-64.

Terminology and dimensional units

K ₁ = 23x10 ⁻⁶ 1/°C	light alloy linear thermal expansion coefficient
D _t [°C]	temperature variation in comparison with the assembling
A ₁ [mm2]	light alloy profile section
L [mm]	rail length
D ₁ [mm]	rail length variation

Calculations

light alloy rails

$$D_1 = K_1 \times D_t \times L$$

Rails for sliding doors

S R

Glass sheet manipulator

Automatic press feeder

Automated oven feeder - tile production

Speedy Rail SR180 and plastic compound cylindric rollers in enviroment with strong presence of impurities

Ordering key /

Code	Pag	Description	Profile
Light alloy guides			
SIMP-T	SR-6	Speedy Rail 35 guide	//
SIMP-F	SR-6	Speedy Rail 35 guide with drilled ends	//
CR48-T	SR-8	Speedy Rail C48 guide	//
CR48-F/CR48-D	SR-8	Speedy Rail C 48 guide drilled	//
SR060 - T	SR-14	'Mini Speedy Rail' SR60 guide	//
SR060 - F	SR-14	'Mini Speedy Rail' SR60 guide with drilled ends	//
SR090 - T	SR-21	'Middle Speedy Rail' SR90 guide	//
SR090 - F	SR-21	Middle Speedy Rail with drilled ends	//
SR120 - T	SR-27	"Standard Speedy Rail" SR120 guide	//
SR120 - F	SR-27	"Standard Speedy Rail" SR120 with drilled ends	//
SR180 - T	SR-53	Speedy Rail 'Wide Body' SR180 guide	//
SR180 - F	SR-53	Speedy Rail 'Wide Body' SR180 guide with drilled ends	//
SR250 - T	SR-61	Speedy Rail 'Super Wide Body' SR250 guide	//
SR250 - F	SR-61	Speedy Rail 'Super Wide Body' SR250 guide with drilled ends	//

Roller			
ROL-C062VC-BA	SR-23	Concentric roller axially free	SR90
ROL-E062VC-BA	SR-23	Eccentric roller axially free	SR90
ROL-C032VC-B	SR-16	Light concentric 'V'-Shaped roller	SR60
ROL-E032VC-B	SR-16	Light eccentric 'V'-Shaped roller	SR60
ROL-C090VC-BH	SR-33	Heavy duty concentric 'V' roller	SR120/SR180/SR250
ROL-E090VC-BH	SR-33	Heavy duty eccentric 'V' roller	SR120/SR180/SR250
ROL-C062VC-BH	SR-23	Concentric roller heavy duty	SR90
ROL-E062VC-BR	SR-23	Ecccentric roller heavy duty	SR90
ROL-C080VC-BR	SR-32	High stiffness concentric roller	SR120
ROL-E080VC-BR	SR-32	High stiffness eccentric roller	SR120
ROL-C050VC-B	SR-17	Plastic compound concentric roller	SR60
ROL-E050VC-B	SR-17	Plastic compound eccentric roller	SR60
ROL-C080VC-BVA	SR-32	Concentric roller - axially free	SR120
ROL-E080VC-BVA	SR-32	Eccentric roller - axially free	SR120
ROL-C080VC-B	SR-32	Concentric roller	SR120
ROL-E080VC-B	SR-32	Eccentric roller	SR120
ROL-C062VC-B	SR-23	Concentric 'V'-shaped roller	SR90
ROL-E062VC-B	SR-23	Eccentric 'V'-shaped roller	SR90
ROL-C090VC-BAH	SR-33	Heavy duty concentric 'V' roller - axially free	SR120/SR180/SR250
ROL-E090VC-BAH	SR-33	Heavy duty eccentric 'V' roller - axially free	SR120/SR180/SR250

Code	Pag	Description	Profile
ROL-E031WC-B	SR-10	Axially constrained eccentric roller	SRC48
ROL-C031WC-X	SR-10	Axially constrained concentric roller	SRC48
ROL-CO31VC-XA	SR-10	Axially free concentric roller	SRC48
ROL-E031VC-BA	SR-10	Axially free eccentric roller	SRC48
ROL-CO30CC-B	SR-7	Concentric contrast roller	SR35
ROL-E030CC-B	SR-7	Eccentric contrast roller	SR35
ROL-C034VC-B	SR-6	Concentric roller	SR35
ROL-E034VC-B	SR-6	Eccentric roller	SR35
ROL-CO90VC-BS	SR-33	Protected concentric 'V' roller for heavy duties	SR120/SR180/SR250
ROL-E090VC-BS	SR-33	Protected eccentric 'V' roller for heavy duties	SR120/SR180/SR250
ROL-E052CCC-BP-S02	SR-35	Eccentric roller	SR120
ROL-C052CCC-BP-S01	SR-35	Concentric roller	SR120
ROL-E052CCC-BV-S02	SR-35	Eccentric roller	SR120
ROL-C052CCC-BV-S01	SR-35	Concentric roller	SR120
ROL-C052CCL-BV	SR-35	Concentric roller	SR120/SR180/SR250
ROL-E052CCL-BV	SR-35	Eccentric roller	SR120/SR180/SR250
ROL-C052CCL-BP	SR-35	Concentric roller	SR120/SR180/SR250
ROL-E052CCL-BP	SR-35	Eccentric roller	SR120/SR180/SR250
ROL-CO40CC-BP	SR-35	Concentric roller radial load - Periodical lubrication	SR120/SR180/SR250
ROL-CO40CC-BV	SR-35	Concentric roller radial load - Lifetime lubrication	SR120/SR180/SR250

Roller assemblies			
55.0222	SR-41	8 Rollers blindo beam roller assembly	SR120
55.0323	SR-39	Roller assembly with backing plate 280x150	SR120
55.0324	SR-39	Roller assembly with backing plate 235.5X80	SR120
55.0325	SR-38	Light alloy body roller assembly with side holes	SR120/SR180/SR250
55.0372	SR-16	Roller assembly with 3 rollers	SR60
55.0375	SR-17	Roller assembly with 4 rollers	SR60
55.0411	SR-40	Narrow base blindo beam roller assembly	SR120
55.0433	SR-38	Light alloy body roller assembly with side mounting holes	SR120/SR180/SR250
55.0472	SR-40	Wide base blindo beam roller assembly	SR120
55.0513	SR-56	Roller assembly with backing plate 336x150	SR180
55.0514	SR-56	Roller assembly with backing plate 381.5x80	SR180
55.0557	SR-34	Light weight roller assembly with 4 rollers	SR120
55.0558	SR-34	Roller assembly with 4 high stiffness rollers	SR120
55.0604	SR-37	Compact roller assembly	SR120/SR180/SR250
55.0605	SR-17	Roller assembly with 3 rollers	SR60
55.0606	SR-18	Roller assembly with 4 rollers	SR60
55.0665	SR-24	Roller assembly with 3 rollers	SR90
55.0666	SR-24	Roller assembly with 4 rollers	SR90
55.0711	SR-40	Wide base roller assembly	SR120
55.0713	SR-56	Roller assembly with backing plate 336x150	SR180

Code	Pag	Description	Profile
55.0723	SR-39	Roller assembly with backing plate 280x150	SR120
55.0724	SR-39	Roller assembly with backing plate 235.5X80	SR120
55.0725	SR-38	Light alloy body roller assembly with mounting holes on short sides	SR120/SR180/SR250
5.0733	SR-38	Light alloy body roller assembly with mounting holes on long sides	SR120/SR180/SR250
55.0740	SR-56	Roller assembly with backing plate 381.5x80	SR180
5.0772	SR-40	Wide base blindo beam roller assembly	SR120
55.0794	SR-37	Compact roller assembly	SR120/SR180
5.0808	SR-63	Roller assembly with 4 V-shaped rollers	SR 250
55.1060	SR-11	Roller assembly with two concentric rollers and one eccentric roller	SRC48
55.1062	SR-10	Roller assembly with one concentric and one eccentric roller	SRC48
5.1064	SR-11	Roller assembly with one conc. roller	SRC48
5.1065	SR-10	Roller assembly with 4 rollers, 3 conc. and 1 ecc.	SRC48
5.1066	SR-10	Roller assembly with one ecc. axial free roller	SRC48
5.1067	SR-10	Roller assembly with one conc. axial free roller	SRC48
5.0135	SR-44	Roller assembly with one ecc. roller	SRC48
5.1143	SR-47	Fixed 5 roller assembly, with 2 eccentric rollers for auto backlash retrival	SR120
5.1144	SR-47	Floating roller assembly with 8 rollers - short pivot ecc periodical lubrication	SR120/SR180/SR250
5.1145	SR-47	Floating roller assembly with 8 rollers - short pivot conc periodical lubrication	SR120/SR180/SR250
5.1146	SR-47	Floating roller assembly with 8 rollers - short pivot ecc lifetime lubrication	SR120/SR180/SR250
5.1147	SR-47	Floating roller assembly with 8 rollers - short pivot conc lifetime lubrication	SR120/SR180/SR250
5.1148	SR-47	Floating roller assembly with 8 rollers - long pivot ecc periodical lubrication	SR120/SR180/SR250
5.1149	SR-47	Floating roller assembly with 8 rollers - long pivot conc periodical lubrication	SR120/SR180/SR250
5.1150	SR-47	Floating roller assembly with 8 rollers - long pivot ecc lifetime lubrication	SR120/SR180/SR250
5.1180	SR-55	Floating roller assembly with 8 rollers - long pivot conc lifetime lubrication	SR120/SR180/SR250
5.1350	SR-43	Heavy duty roller assembly with 4 rollers	SR180
5.1351	SR-43	Floating roller assembly with 4 rollers - long pivot ecc.	SR120/SR180/SR250
5.1354	SR-43	Floating roller assembly with 4 rollers - long pivot conc.	SR120/SR180/SR250
5.1355	SR-43	Floating roller assembly with 4 rollers - short pivot ecc.	SR120/SR180/SR250
5.1358	SR-43	Floating roller assembly with 4 rollers - short pivot conc.	SR120/SR180/SR250
5.1359	SR-43	Floating roller assembly with 4 rollers - short pivot ecc. with axially free	SR120/SR180/SR250
5.1361	SR-43	Floating roller assembly with 4 rollers - short pivot conc. with axially free	SR120/SR180/SR250
5.1363	SR-43	Floating roller assembly with 4 rollers - short pivot ecc.	SR120/SR180/SR250
5.1364	SR-43	Floating roller assembly with 4 rollers - long pivot ecc.	SR120/SR180/SR250
5.1365	SR-43	Floating roller assembly with 4 rollers - short pivot conc.	SR120/SR180/SR250
5.1366	SR-46	Floating roller assembly with 4 rollers - long pivot conc.	SR120/SR180/SR250
5.1367	SR-46	Floating roller assembly with 6 rollers - short pivot ecc.	SR120/SR180/SR250
5.1368	SR-46	Floating roller assembly with 6 rollers - short pivot ecc.	SR120/SR180/SR250
5.1369	SR-46	Floating roller assembly with 6 rollers - long pivot ecc.	SR120/SR180/SR250
5.1370	SR-46	Floating roller assembly with 6 rollers - long pivot ecc.	SR120/SR180/SR250
5.1371	SR-46	Floating roller assembly with 6 rollers - short pivot conc.	SR120/SR180/SR250
55.1372	SR-46	Floating roller assembly with 6 rollers - long pivot conc.	SR120/SR180/SR250
5.1373	SR-46	Floating roller assembly with 6 rollers - long pivot conc.	SR120/SR180/SR250

Code	Pag	Description	Profile
55.1380	SR-57	Complete pairing floating assembly - short pivot	SR180
55.1381	SR-57	Complete pairing floating assembly - short pivot	SR180
55.1382	SR-57	Complete pairing floating assembly - long pivot	SR180
55.1383	SR-57	Complete pairing floating assembly - long pivot	SR180
55.1419	SR-45	Floating roller assembly with 6 rollers - long pivot ecc.	SR120/SR180/SR250
55.1420	SR-45	Floating roller assembly with 6 rollers - long pivot conc.	SR120/SR180/SR250
55.1421	SR-45	Floating roller assembly with 6 rollers - long pivot ecc.	SR120/SR180/SR250
55.1422	SR-45	Floating roller assembly with 6 rollers - long pivot conc.	SR120/SR180/SR250
55.1423	SR-45	Floating roller assembly with 6 rollers - short pivot ecc.	SR120/SR180/SR250
55.1424	SR-45	Floating roller assembly with 6 rollers - short pivot conc.	SR120/SR180/SR250
55.1425	SR-45	Floating roller assembly with 6 rollers - short pivot ecc.	SR120/SR180/SR250
55.1426	SR-45	Floating roller assembly with 6 rollers - short pivot conc.	SR120/SR180/SR250
55.1550	SR-36	2 Rollers light full-block assembly	SR120/SR180/SR250
55.1555	SR-42	Floating roller assembly with 4 rollers ecc.	SR120/SR180/SR250
55.1556	SR-42	Floating roller assembly with 4 rollers conc.	SR120/SR180/SR250
55.1565	SR-42	Floating roller assembly with 4 rollers ecc.	SR120/SR180/SR250
55.1566	SR-42	Floating roller assembly with 4 rollers conc.	SR120/SR180/SR250
55.1570	SR-36	Light alloy rollers assembly with 2 rollers - Lifetime lubricated.	SR120/SR180/SR250
55.3143	SR-47	Floating roller assembly with 8 rollers - short pivot ecc periodical lub. axially free	SR120/SR180/SR250
55.3144	SR-47	Floating roller assembly with 8 rollers - short pivot conc periodical lub. axially free	SR120/SR180/SR250
55.3145	SR-47	Floating roller assembly with 8 rollers - short pivot ecc lifetime lub. axially free	SR120/SR180/SR250
55.3146	SR-47	Floating roller assembly with 8 rollers - short pivot conc lifetime lub. axially free	SR120/SR180/SR250
55.3147	SR-47	Floating roller assembly with 8 rollers - long pivot ecc periodical lub. axially free	SR120/SR180/SR250
55.3148	SR-47	Floating roller assembly with 8 rollers - long pivot conc periodical lub. axially free	SR120/SR180/SR250
55.3149	SR-47	Floating roller assembly with 8 rollers - long pivot ecc lifetime lub. axially free	SR120/SR180/SR250
55.3150	SR-47	Floating roller assembly with 8 rollers - long pivot conc lifetime lub. axially free	SR120/SR180/SR250
55.3350	SR-43	Floating roller assembly with 4 rollers - long pivot ecc. with axially free	SR120/SR180/SR250
55.3351	SR-43	Floating roller assembly with 4 rollers - long pivot conc. with axially free	SR120/SR180/SR250
55.3361	SR-43	Floating roller assembly with 4 rollers - short pivot ecc. with axially free	SR120/SR180/SR250
55.3363	SR-43	Floating roller assembly with 4 rollers - long pivot ecc. with axially free	SR120/SR180/SR250
55.3364	SR-43	Floating roller assembly with 4 rollers - short pivot conc. with axially free	SR120/SR180/SR250
55.3365	SR-43	Floating roller assembly with 4 rollers - long pivot conc. with axially free	SR120/SR180/SR250
55.3366	SR-46	Floating roller assembly with 6 rollers - short pivot ecc. with axially free	SR120/SR180/SR250
55.3367	SR-46	Floating roller assembly with 6 rollers - short pivot ecc. with axially free	SR120/SR180/SR250
55.3368	SR-46	Floating roller assembly with 6 rollers - long pivot ecc. with axially free	SR120/SR180/SR250
55.3369	SR-46	Floating roller assembly with 6 rollers - long pivot ecc. with axially free	SR120/SR180/SR250
55.3370	SR-46	Floating roller assembly with 6 rollers - short pivot conc. with axially free	SR120/SR180/SR250
55.3371	SR-46	Floating roller assembly with 6 rollers - short pivot conc. with axially free	SR120/SR180/SR250
55.3372	SR-46	Floating roller assembly with 6 rollers - long pivot conc. with axially free	SR120/SR180/SR250
55.3373	SR-46	Floating roller assembly with 6 rollers - long pivot conc. with axially free	SR120/SR180/SR250
55.3419	SR-45	Floating roller assembly with 6 rollers - long pivot ecc. with axially free	SR120/SR180/SR250
55.3420	SR-45	Floating roller assembly with 6 rollers - long pivot conc. with axially free	SR120/SR180/SR250

S R

Code	Pag	Description	Profile
55.3421	SR-45	Floating roller assembly with 6 rollers - long pivot ecc. with axially free	SR120/SR180/SR250
55.3422	SR-45	Floating roller assembly with 6 rollers - long pivot conc. with axially free	SR120/SR180/SR250
55.3423	SR-45	Floating roller assembly with 6 rollers - short pivot ecc. with axially free	SR120/SR180/SR250
55.3424	SR-45	Floating roller assembly with 6 rollers - short pivot conc. with axially free	SR120/SR180/SR250
55.3425	SR-45	Floating roller assembly with 6 rollers - short pivot ecc. with axially free	SR120/SR180/SR250
55.3426	SR-45	Floating roller assembly with 6 rollers - short pivot conc. with axially free	SR120/SR180/SR250
55.3553	SR-42	Floating roller assembly with 4 rollers ecc. with axially free	SR120/SR180/SR250
55.3554	SR-42	Floating roller assembly with 4 rollers conc. with axially free	SR120/SR180/SR250
55.3563	SR-42	Floating roller assembly with 4 rollers ecc. with axially free	SR120/SR180/SR250
55.3564	SR-42	Floating roller assembly with 4 rollers conc. with axially free	SR120/SR180/SR250

Dovetails and inserts			
411.0462	SR-15	Steel dovetail 2 holes M6 L=50 mm	SR60
411.0469	SR-29	Steel dovetail 2 holes M12 L=100 mm	SR120/SR180/SR250
411.0470	SR-29	Steel dovetail 6 holes M12 L=300 mm	SR120/SR180/SR250
411.0472	SR-29	Steel dovetail 2 holes M12 L=200 mm	SR120/SR180/SR250
411.0503	SR-29	Steel dovetail 2 holes M12 L=70 mm	SR120/SR180/SR250
411.0588	SR-29	Steel dovetail 3 holes M12 L=150 mm	SR120/SR180/SR250
411.0675	SR-29	Steel dovetail 2 holes M8 L=50 mm	SR120/SR180/SR250
411.0732	SR-15	Steel dovetail 1 hole M6 L=20 mm	SR60
411.0745	SR-29	Steel dovetail 1 hole M12 L=50 mm	SR120/SR180/SR250
411.0754	SR-15	Steel dovetail 3 holes M6 L=80 mm	SR60
411.0768	SR-15	Steel dovetail 2 holes M6 L=60 mm	SR60
411.0769	SR-15	Steel dovetail 6 holes M6 L=200 mm	SR60
411.0771	SR-15	Steel dovetail 2 holes M6 L=150 mm	SR60
411.0845	SR-29	Steel dovetail quick front insertion 1 hole M12 L=50 mm	SR120/SR180/SR250
411.0855	SR-22	Steel dovetail quick front insertion 1 hole M8 L=29 mm	SR90
411.0888	SR-30	Steel dovetail without step 3 holes M12 L=150 mm	SR120/SR180/SR250
411.0970	SR-29	Steel dovetail 6 holes M12 L=300 mm	SR120/SR180/SR250
411.1025	SR-22	Steel dovetail 1 hole M4 L=50mm	SR90
411.1045	SR-22	Steel dovetail 1 hole M8 L=50 mm	SR90
411.1047	SR-22	Steel dovetail 1 hole M6 L=50 mm	SR90
411.1046	SR-22	Steel dovetail without step 3 holes M8 L=50 mm	SR90
411.1069	SR-22	Steel dovetail 2 holes M8 L=100 mm	SR90
411.1070	SR-22	Steel dovetail 6 holes M8 L=300 mm	SR90
411.1072	SR-22	Steel dovetail 4 holes M8 L=200 mm	SR90
411.1088	SR-22	Steel dovetail 3 holes M8 L=150 mm	SR90
411.1111	SR-29	Steel dovetail 1 hole M8 L=50 mm	SR120/SR180/SR250
411.1112	SR-29	Steel dovetail 2 holes M8 L=100 mm	SR120/SR180/SR250
411.1113	SR-29	Steel dovetail 3 holes M8 L=150 mm	SR120/SR180/SR250
411.1117	SR-29	Steel dovetail 1 hole M10 L=50 mm	SR120/SR180/SR250
411.1119	SR-29	Steel dovetail 2 holes M10 L=100 mm	SR120/SR180/SR250

Code	Pag	Description	Profile
411.1120	SR-29	Steel dovetail 3 holes M10 L=150 mm	SR120/SR180/SR250
411.1174	SR-30	Steel dovetail quick front insertion without step 1 hole M8 L=50 mm	SR120/SR180/SR250
411.1178	SR-29	Steel dovetail quick front insertion 1 hole M10 L=50 mm	SR120/SR180/SR250
411.1185	SR-30	Steel dovetail without step 1 hole M12 L=50 mm	SR120/SR180/SR250
411.1186	SR-30	Steel dovetail without step 1 hole M10 L=50 mm	SR120/SR180/SR250
411.1349	SR-53	Zinc plated steel insert 1 hole M4 L=16 mm, with spring loaded ball	SR180/SR250
411.1351	SR-53	Zinc plated steel insert 1 hole M5 L=16 mm, with spring loaded ball	SR180/SR250
411.1352	SR-53	Zinc plated steel insert 1 hole M6 L=16 mm, with spring loaded ball	SR180/SR250
411.1353	SR-53	Zinc plated steel insert 1 hole M8 L=16 mm, with spring loaded ball	SR180/SR250
411.1675	SR-30	Steel dovetail without step 2 holes M8 L=50 mm	SR120/SR180/SR250
411.1732	SR-15	Steel dovetail 1 hole M4 L=20 mm	SR60
411.2533	SR-53	9 holes steel insert M5 L=496 mm	SR180/SR250
411.2534	SR-53	9 holes steel insert M4 L=496 mm	SR180/SR250
411.2732	SR-15	Steel dovetail 1 hole M5 L=20 mm	SR60
411.2733	SR-15	Steel dovetail 9 holes M5 L=496 mm	SR60
411.2736	SR-15	Dovetail quick front insertion 1 hole M6	SR60
411.3532	SR-15	Steel dovetail 1 hole M8 L=20 mm	SR60
411.3633	SR-53	9 holes steel insert M6 L=496 mm	SR180/SR250

Fishplates			
411.0567	SR-31	Fishplate for drive head L=130 mm	SR120/SR180/SR250
411.0570	SR-31	Fishplate for side-arm attachment L=200 mm	SR120/SR180/SR250
411.0572	SR-31	Fishplate for end to end joining L=300 mm	SR120/SR180/SR250
411.0573	SR-31	Fishplate for end to end joining L=300 mm countersuk holes	SR120/SR180/SR250
411.0582	SR-55	Fishplate for roller assembly 55.1180	SR180
411.0463	SR-15	Light alloy fishplate	SR60
411.0690	SR-31	Steel fishplate for end to end joining L=300 mm	SR120/SR180/SR250
411.0735	SR-34	Fishplate for roller assemblies 55.0557 / 55.0558	SR120
411.0749	SR-17	Fishplate for roller assemblies 55.0605	SR60
411.0750	SR-18	Fishplate for roller assemblies 55.0606	SR60
411.0767	SR-14	Fishplate for drive head L=80 mm	SR60
411.0770	SR-16	Fishplate for side-arm attachment L=150 mm	SR60
411.0772	SR-15	Fishplate for drive head L=200 mm	SR60
411.0824	SR-24	Fishplate for roller assemblies 55.0665	SR90
411.0825	SR-24	Fishplate for roller assemblies 55.0666	SR90
411.0866	SR-21	Fishplate for drive head L=130 mm	SR90
411.0872	SR-22	Fishplates for end to end joining L=300 mm	SR90
411.0913	SR-16	Fishplate for roller assemblies 55.0372	SR60
411.0914	SR-17	Fishplate for roller assemblies 55.0375	SR60
411.0957	SR-63	Light alloy fishplate for roller assemblies 55.0788, 55.0808	SR250
411.0960	SR-61	Steel fishplates for end to end joining L=300mm	SR250
411.1124	SR-22	Fishplate for side-arm attachment L=150 mm	SR90

411.1509

411.1511

SR-49

SR-49

Code	Pag	Description	Profile
411.1041	SR-16	Plate for m ² rack mounting	SR60
411.1155	SR-30	Fishplate for mod.3-4 rack mounting	SR120/SR180/SR250
411.1179	SR-54	Fishplate for mod.2 Rack mounting	SR180/SR250
411.1226	SR-22	Steel plate for m ² rack mounting m ²	SR90
Racks			
411.1489	SR-49	Rack m2 Q10 L=998,82 straight toothed	//
411.1491	SR-49	Rack m2 Q10 L=2004,14 straight toothed	//
411.1499	SR-49	Rack m3 Q10 L=998,82 straight toothed	//
411.1501	SR-49	Rack m3 Q10 L=1997,84 straight toothed	//

Rack m4 Q10 L=1005,10 straight toothed

Rack m4 Q10 L=2010,42 straight toothed

\\

\\

Components			
411.0476	SR-28	Drive head	SR120
411.0610	SR-21	Bolt for drive head mount TE M6x55	SR90
411.0617	SR-28	Bolt for drive head mount TE M8x70	SR120
411.0685	SR-50	Scraper for floating and full-block assemblies	SR120/SR180/SR250
411.0686	SR-50	Scraper for compact	SR120/SR180/SR250
411.0696	SR-54	Drive head	SR180
411.0739	SR-14	Drive head	SR60
411.0744	SR-54	Bolt for drive head TE M8x90	SR180
411.0775	SR-14	M6 allen round head screw	SR60
411.0776	SR-14	Drive head	SR60
411.0818	SR-15	Bolt for drive head mount TE M5x40	SR60
411.0832	SR-58	Fishplate for drive head	SR180
411.0856	SR-21	Drive head	SR90
411.0858	SR-21	End cap	SR90
411.1015	SR-62	Drive head	SR 250
411.1261	SR-44	5 rollers assembly supports	SR120/SR180/SR250
411.1963	SR-62	End cap	SR 250
411.1964	SR-54	End cap	SR180
411.1740	SR-28	Alluminium alloy end cap	SR120
55047202	SR-50	Scraper for blindo beam roller assemblies	SR120
55.1000	SR-50	Sliding brush for speedy rail and steel rail	SR120SR180/SR250

																	_
																	_
																	_
																	_

MiniRoller Rail

An alternative to miniature ball guide in several industries and applications: **7 main advantages**.

Easy installation

0

Eliminates the noise and difficult assembly associated with using mini ball guides.

Easy mounting Compensation of parallelism

deviation up to 0.03 mm.

Easy preload adjustment

Adjustable rollers preload to customize rolling force and motion characteristics.

Uniquely quiet

Honed raceways and roller bearings for smooth and silent motion.

Optimal reliability in dirty environments

Ideal for harsh environments as their large rolling components make them highly resistant to dust and dirt contamination.

Product explanation

Compact linear guide with rollers, induction hardened and honed raceways

MiniRoller Rail is a steel linear guide with compact design. It has radial roller bearings that glides on an induction hardened and honed raceway. It has been developed for applications that move moderate loads within tight spaces. MiniRoller Rail also manages parallelism deviation up to 0.03 mm.

The most important characteristics:

- Compact size
- Corrosion resistant surface
- Smooth motion
- Hardened and honed raceways surface
- Sliders with four rollers arranged in pairs
- Not sensitive to dirt due to the large rollers
- Low maintenance
- Quieter than recirculating ball systems
- MiniRoller Rail profile rails can be drop-in replace linear guides from another manufacturers while maintaining the same critical dimensions.

Preferred areas of application:

- Building and furniture
- Light handling machines, pick & place
- Special vehicles
- Diagnostic lab and liquid handling
- Pharmaceutical
- Food and beverage
- Interior design with special solutions
- Medical device manufacturing
- Vending & Kiosk machines

M R R

Rail:

Rails are made of cold-drawn carbon steel with electrolytic zinc-plated and passivated surface treatment as a standard corrosion protection. Other treatments are available for higher corrosion resistance, these include: zinc nickel and nickel plating. The raceways are induction hardened and honed for smoothness and maximizing the service life.

Sliders:

The slider body is made of steel DIN 95MnPb28 with electrolytic zincplated and passivated surface treatment. Stainless-steel version is available upon request. Rollers are paired with concentric and eccentric types, which enables firm contact with raceway for smooth operation.

Rollers:

Concentric and eccentric rollers comes with radial ball bearings made of steel or stainless steel as two different options. Roller bearing sealing options also comes with two different materials: 2RS rubber seals or 2Z steel shields. All roller bearings are lubricated for life.

Fig. 3

Technical data 🏼 🖊 🗸

Performance characteristics:

- MiniRoller Rail available size: 11
- Max. slider operating speed on the rail: 3 m/s (118 in/s) (depending on application)
- Max. acceleration: 5 m/s² (196 in/s²) (depending on application)
- Available rail lengths up to 1950 mm (78.74 in)
- Temperature range: -20 °C to +120 °C (-4 °F to +248 °F) briefly up to max. +150 °C (+302 °F)
- Rail material: standard C43
- Rail raceways are induction hardened and honed
- Rails and slider bodies are standard electrolytic zinc-plated and passivated; increased anticorrosive protection on request (see pg. MRR-9 Anticorrosive protection)
- Slider body material: steel DIN 9SMnPb28, AISI 304 for the stainlesssteel version
- Rollers material: standard steel 100Cr6, AISI 440C stainless steel version.
- Rollers are lubricated for life
- Roller seal/shield: standard 2Z (steel cover disk), 2RS (splash-proof)
- Maximum parallelism deviation: 0.03 mm

Remarks:

- With a simple adjustment of the eccentric roller (denoted with a marking on the bottom of the roller), the slider preload can be set to a desired preload or clearance.
- Factory preload setting also available
- Various surface treatments available upon request

MiniRoller Rail load capacities

Fig. 6

Туре		Load capacitie [N]	es	Static moments [Nm]					
	C [N]	C _{0rad} [N]	C _{oax} [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]			
SMR11	1530	820	375	2.3	5.9	10.3			
						Tab. 1			

Rail width

 C^2

 1 Fixing holes (V) for countersunk 90 degrees head screws according to DIN 7991 2 Fixing holes (C) for socket cap screws according to DIN 912

Туре	D [mm]	K [mm]	C²	V	Weight [kg/m]
RMR	11.3	6.5	M3	M3	0.48
					Tab. 2

 V^1

≥ Rail length

Fig. 7

Fig. 6

Туре	Size	Min length [mm]	Max length [mm]	Available standard lengths L [mm]
RMR	11	150	1950	150 - 200 - 250 - 300 - 350 - 400 - 450 - 500 - 550 - 600 - 650 - 700 - 750 - 800 - 850 - 900 - 950 - 1000 - 1050 - 1100 -1150 - 1200 - 1250 - 1300 - 1350 - 1400 - 1450 - 1500 - 1550 - 1600 - 1650 - 1700 - 1750 - 1800 - 1850 - 1900 - 1950

Tab. 3

Slider

Туре	G [mm]	H [mm]	N [mm]	L [mm]	M [mm]	l [mm]	S [mm]	F	Weight [kg]
SMR11	39	35	15	20	12	7.5	6.2	M3	0.08
									Tab. 4

Mounted sliders and rails

Configuration	A [mm]	B [mm]	E [mm]
ZK-RMR	38	13	0.75
			Tab. 5

Accessories

Rollers

Seals: 2RS is the splash-proof seal, 2Z is the steel cover disc Note: The rollers are lubricated for life

Туре А			D		н к	G	F	С	C _{Orad}	Weight		
Inox	[mm]	[mm]	[mm]	lwwl	[mm]	[mm]	[mm]	[mm]		נואן	[N]	[kg]
CXPNX18-2RS	14	4	6	-	1.55	1.8	5.5	M4	765	410	0.004	
-	14	4	6	-	1.55	1.8	5.5	M4	765	410	0.004	
CXPAX18-2RS	14	4	6	0.4	1.55	1.8	5.5	M4	765	410	0.004	
-	14	4	6	0.4	1.55	1.8	5.5	M4	765	410	0.004	
	Inox CXPNX18-2RS - CXPAX18-2RS	Inox [mm] CXPNX18-2RS 14 - 14 CXPAX18-2RS 14	Inox [mm] [mm] CXPNX18-2RS 14 4 - 14 4 CXPAX18-2RS 14 4	Inox [mm] [mm] [mm] CXPNX18-2RS 14 4 6 - 14 4 6 CXPAX18-2RS 14 4 6	Inox [mm] [mm] [mm] [mm] CXPNX18-2RS 14 4 6 - - 14 4 6 - CXPAX18-2RS 14 4 6 0.4	Inox [mm] [mm] <th< th=""><th>Inox Imm] <th< th=""><th>Inox [mm] <th< th=""><th>Inox [mm] [m] [m]</th><th>Inox [mm] [m] [m]</th></th<><th>Inox Imm] <th< th=""></th<></th></th></th<></th></th<>	Inox Imm] Imm] <th< th=""><th>Inox [mm] <th< th=""><th>Inox [mm] [m] [m]</th><th>Inox [mm] [m] [m]</th></th<><th>Inox Imm] <th< th=""></th<></th></th></th<>	Inox [mm] [mm] <th< th=""><th>Inox [mm] [m] [m]</th><th>Inox [mm] [m] [m]</th></th<> <th>Inox Imm] <th< th=""></th<></th>	Inox [mm] [m] [m]	Inox [mm] [m] [m]	Inox Imm] Imm] <th< th=""></th<>	

Tab. 6

Technical Instructions

Lubrication

Roller lubrication

All roller bearings of the MiniRoller rail are lubricated for life.

Lubrication of the raceways

Rails must be lubricated before operation. Recommended lubrication intervals are heavily dependent upon the ambient conditions, speed, and temperature. Under normal conditions, lubrication is recommended after 100 km operational performance or after an operating period of six months whichever comes first. In critical application cases the interval should be shorter. Please clean the raceways carefully before lubrication. We recommend a high quality roller bearing grease lubricant consisting of mineral oil with a white lithium soap base of NLGI 2 grade.

Proper lubrication during normal conditions:

- reduces friction
- reduces wear
- reduces running noise

Different lubricants are available by request for special applications:

- FDA-approved lubricant for use in the food industry
- specific lubricant for clean rooms
- specific lubricant for the marine technology sector
- specific lubricant for high and low temperatures
- For specific information, contact Rollon technical support.

Corrosion protection

The MiniRoller rails and slider bodies comes standard with electrolytic zinc plating with passivation for anticorrosion protection. If increased corrosion protection is required, application-specific surface treatments are available upon request for rails e.g. approved nickel plating for use in the

food industry. In this case, the chosen treatment must be specified in the order rails using the appropriate code shown in the table below. For more information contact Rollon technical support.

Treatment	Characteristics
Electrolytic zinc plating with passivation	The treatment is commonly used in sectors where a major corrosion resistance is required. The layer of the treatment is removed, and the raceways are protected with post-honing oil.
ZincNickel ISO19598 (Z)	Ideal for outdoor applications. Stainless steel sliders are ideal combined with zinc nickel rails.
Nickel Plating (N)	Provides high resistance to chemical corrosion and is ideal for applications in medical or food related environments. The raceways comes with Nickel plating treatment. Stainless steel sliders are ideal combined with nickel plated rails.

Tab. 7

M R R

Preload

Preload classes

The factory installed systems, consisting of rails and sliders, are available in two preload classes:

Standard preload K1 means a rail-slider combination with minimum preload which means the rollers are adjusted free of clearance for optimal running properties.

Usually preload K2 is used for rail-slider systems for increasing the rigidity. When using a system with K2 preload a reduction of the loading capacities and service life must be taken into consideration (see tab. 8).

This coefficient y is used in the calculation formula for checking the static load and lifetime (see pg. MRR-14, fig. 16). The interference is the difference between the contact lines of the rollers and the raceways of the rail.

Preload class	Reduction y
K1	-
К2	0.1
	Tab. 8

Rail size	Preload class	Interference* [mm]
11	К1	0.01
11	K2	0.03
* Measured on the largest outer dimension between the raceways		aceways Tab. 9

Setting the preload

Туре **Tightening torque** [Nm] ZK-RMR... 3 Tab. 10

Fig. 12

If the MiniRoller rails are delivered as a system, the sliders are already set with no clearance. In this case the fixing screws are secured with thread locking glue at the factory.

If delivered separately, or if the sliders should be installed in another track, the eccentric roller pins must be readjusted. Important: The fixing screws must be additionally glued against loosening. The following points must also be observed:

- н. Use thread locking glue for fixing screws against coming loose.
- Wipe the raceways of any dirt and debris.
- Slightly loosen the fixing screws of the roller mounting. The eccentric roller pins are marked on the bottom.
- Position the slider(s) at the ends of the rail.
- The special flat key provided is inserted from the side onto the hexagon of the roller to be set (see fig. 12).

- By turning the flat key clockwise the roller is pressed against the raceway and thus reduces the clearance. Observe that with increasing preload, the friction is also increased and thus the service life reduced.
- Hold the roller pin with the adjustment key in the desired position and carefully tighten the fixing screw.
- Move the slider on the rail and check the preload over the entire length of the rail. It should move easily and the slider should not have play at any location of the rail.
- Now tighten the fixing screws with the specified tightening torque (see tab. 10), while the flat key holds the angle adjustment of the pin. A special thread in the roller pin secures the set position.

Speed and acceleration

The MiniRoller rail is suitable for low-to-moderate operating speeds and accelerations.

Size	Speed [m/s]	Acceleration [m/s ²]
11	3	5
		Tab. 11

Operating temperatures

The temperature range for continuous operation is: -20 °C / +120 °C with occasional peaks up to +150 °C.

Installation of two rails in parallel

If two MiniRoller rails are installed, the height difference of the two rails must not exceed a certain value (obtainable from the table below) in order to ensure proper guiding. These maximum values result from the maximum allowable twisting angle of the rollers in the raceways (see tab. 12).

Example:

if a = 500 mm; $b = a^{tan} \alpha = 0.5$ mm

When using two rails, the maximum parallelism deviation must not be exceeded (see tab. 13). Otherwise stresses can occur, which can result in a reduction in load capacity and service life.

Size	К1	К2
11	0.03	0.02
		Tab. 13

Rail / Slider system

Ordering example: ZK-RMRV11-1950-N

Slider

SMR11	-4	- 2Z	
SMRX11		- 2RS	
		Roller type (22	Z, 2RS) <i>see pg. MRR-8, tab. 7</i>
	Number of r	ollers	
Slider Type (X=Stainless s	steel)	
Ordering exami	ole:		

SMR11-4-2Z

Calculation formulas

Static load

The radial load capacity rating, C_{0rad} the axial load capacity rating C_{0ax} , and moments M_x , M_y , M_z indicate the maximum permissible values of the load (see pg. MRR-5), higher loads will have a detrimental effect on the running quality. A safety factor, S_0 , is used to check the static load, which takes into account the basic parameters of the application and is defined more in detail in the following table:

Safety factor S ₀	
No shock nor vibration, smooth and low-frequency reverse, high assembly accuracy, no elastic deformations	1.0 - 1.5
Normal installation conditions	1.5 - 2.0
Shock and vibration, high-frequency reverse, significant elastic deformation	2.0 - 3.5
	Tab. 14

The ratio of the actual load to maximum permissible load may be as large as the reciprocal of the accepted safety factor, $\rm S_{o}$, at the most.

$$\frac{P_{0rad}}{C_{0rad}} \le \frac{1}{S_0} \qquad \frac{P_{0ax}}{C_{0ax}} \le \frac{1}{S_0} \qquad \frac{M_1}{M_x} \le \frac{1}{S_0} \qquad \frac{M_2}{M_y} \le \frac{1}{S_0} \qquad \frac{M_3}{M_z} \le \frac{1}{S_0}$$
Fig. 15

The above formulas are valid for a single load case.

If two or more forces are acting simultaneously, please check the following formula:

$$\frac{P_{0rad}}{C_{0rad}} + \frac{P_{0ax}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} + y \le \frac{1}{S_{0}}$$

P _{0rad}	= effective radial load (N)
C _{0rad}	= permissible radial load (N)
P _{0ax}	= effective axial load (N)
C _{Oax}	= permissible axial load (N)
$M_{1}^{}, M_{2}^{}, M_{3}^{}$	= external moments (Nm)
M_x, M_y, M_z	= maximum permissible moments
	in the different loading directions (Nm)
у	= reduction due to preload (see pg. MRR-10, Tab. 8)

Fig. 16

The safety factor ${\rm S_0}$ can lie on the lower given limit if the occurring forces can be determined with sufficient precision. If shock and vibration are

present, the higher value should be selected. For dynamic applications higher safety is required. Please contact Rollon technical support.
Slider load

Examples of formulas for determining the forces on the most heavily loaded slider

For an explanation of the parameters in the formulas see pg. MRR-17, fig.28.

Slider load:

$$P_{1} = F \cdot \frac{b}{a+b}$$
$$P_{2} = F \cdot P_{1}$$

in addition each slider is loaded by a moment:

 $M_1 = \frac{F}{2} \cdot c$

Fig. 20

Slider load:

$$P_{1a} \cong P_{2a} = \frac{F}{2}$$
$$P_{2b} \cong P_{1b} = F \cdot \frac{a}{b}$$

Fig. 21

Fig. 19

 $P_{2} = F \cdot \frac{a}{b}$ $P_{1} = P_{2} + F$ Fig. 22

Note: Applies only if the distance between centers of the sliders $b > 2 \ensuremath{x}$ slider length

M R R

,

Slider load:

Fig. 25

where the force is applied.

Slider load:

$$P_1 \cong P_2 = F \cdot \frac{a}{b}$$
 Fig. 26

Note: Applies only if the distance between centers of the sliders $b > 2 \ensuremath{x}$ slider length

Fig. 27

Horizontal movement

Test with a moving element of the weight-force F_{g} at the instant the direc-

tion of movement changes

Inertial force	Slider load at time of reverse	
$F = m \cdot a$	$P_1 = \frac{F \cdot I}{d} + \frac{F_g}{2}$	$P_2 = \frac{F_g}{2} - \frac{F \cdot I}{d}$

Fig. 28

Explanation of the calculation formula

Fig. 29

Service life

The dynamic load capacity C is a conventional variable used for calculating the service life. This load corresponds to a nominal service life of 100 km. The following formula (see fig. 30) links the calculated theoretical service life to the dynamic load capacity and the equivalent load:

$$L_{\rm Km} = 100 \cdot \left(\frac{C}{P} \cdot \frac{f_{\rm c}}{f_{\rm i}} \cdot f_{\rm h}\right)^{\epsilon}$$

 L_{km} = theoretical service life (km) C = dynamic load capacity (N)

P = effective equivalent load (N)

 $f_c = contact factor$

f_i = application coefficient

 $f_h = stroke factor$

Fig. 30

The equivalent load P corresponds in its effects to the sum of the forces and moments working simultaneously on a slider. If these different load components are known, P results as follows:

$$P = P_r + \left(\frac{P_a}{C_{nax}} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z} + y\right) \cdot C_{0rad}$$

Here the external loads are assumed as constant in time. Brief loads, which do not exceed the maximum load capacities, do not have any relevant effect on the service life and can therefore be neglected.

The contact factor f_c refers to applications in which several sliders pass the same rail section. If two or more sliders move over the same point of a rail, the contact factor according to table 15 to be taken into account in the formula for calculation of the service life.

y = reduction due to preload (see pg. MRR-10, Tab. 8)

Fig. 31

Calculation formulas

The application coefficient f_i takes into account the operational conditions in the service life calculation. It has a similar significance to the safety factor $S_{\rm o}$ in the static load test. It is calculated as described in the following table:

f	
Neither shocks nor vibrations, smooth and low-frequency direction change; clean operating conditions; low speeds (<1 m/s)	1.0 - 1.5
Slight vibrations, average speeds (1 - 2.5 m/s) and average frequency of direction change	1.5 - 2.0
Shocks and vibrations, high speeds (> 2.5 m/s) and high-frequency direction change; extreme dirt contamination	2.0 - 3.5

Tab. 16

The stroke factor $\rm f_h$ takes into account the higher load of the raceways and rollers during short strokes on the same total length of run. The corresponding values are taken from the following graph (for strokes longer than 1 m, $\rm f_h$ =1):

Product explanation $\parallel \checkmark$

Mono Rails are profile rails for the highest degree of precision

The running grooves are ground in semicircular profile and have a contact angle of 45° in X-arrangement so that the same load capacity is guaranteed in all principle directions. Use of large steel balls enables high load and moment capacities. All carriages in size 55 are equipped with ball chains.

The most important characteristics:

- X-arrangement with 2-point contact of the raceways
- Uniform loading capacity in all main directions
- High ability for self-regulating
- Small differential slip in comparison to 4-point contact
- Very quiet running and low operating noise
- Low maintenance due to advanced lubrication chamber
- Small displacement force in preload compared to 4-point contact
- Mono Rail profile rails meet the market standard and can replace linear rails of the same design from other manufacturers while maintaining the main dimensions
- Miniature Mono Rail available in a standard or large version
- Miniature Mono Rail available in Martensite stainless steel.

Preferred areas of application:

- Construction and machine technology (safety doors, feeding)
- Packaging machines
- Special purpose machinery
- Logistics (e.g., handling units)
- Medical technology (e.g., X-ray equipment, hospital gurneys)
- Semiconductors and electronics industry

MRS

Standard carriage with flange.

MRS...W / MRT...W

Carriage without flange, also called block. Available in two different heights. MRT is the lower version.

Fig.3

MRS...L

Carriage in long version for holding larger loads. MRS...L is the version with flange.

Fig. 4

MRS...LW Carriage in long version without flange.

M R

MRT...SW

MRR...F

Carriage without flange in short version for lower loads with equally high precision.

Guide rail MRR...F for bolting from below with threaded holes. Design with smooth surface without bevels.

Fig. 7

Standard width

Compact technology and high performance in its smallest structural shape.

Large width

Wide miniature profile rails, with a compact size, allow the acceptance of higher forces and moments. Especially suited for single rail applications.

Technical data 📈

Performance characteristics:

- Mono Rail available sizes: 15, 20, 25, 30, 35, 45, 55
- Standard version Miniature Mono Rail available sizes: 7, 9, 12, 15
- Large version Miniature Mono Rail available sizes: 9, 12, 15
- Max. operating speed: 3.5 m/s (137.79 in/s) (depending on application)
- Max. operating temperature: +80 °C (+176 °F) (depending on application)
- Available rail lengths up to approx. 4,000 mm (157.5 in) for Mono Rail (see Ordering key, pag. MR-45)
- Four preload classes for Mono Rail: G1, K0, K1, K2
- Three precision classes: N, H, P
- Three preload classes for the Miniature Mono Rails: V0, VS, V1
- Lengths for single rails are available up to 1,000mm (39.37 in) for the Miniature Mono Rail

Remarks:

- Combining rails is possible (joining)
- The fixing holes on the carriages with flange can also be used as through holes for fastening from below. Here, the reduction in size of the screw diameter must be observed
- Various surface coatings on request
- Manual and pneumatic clamping elements available as accessories.
 Depending on the height of the carriage, additional adapter plates must be used
- Dimensions H₂ and L of the carriage change when using metal deflectors and other seals. Refer to Sec. 4 Accessories, pg. MR-15f
- The carriages in size 55 are equipped with ball chains
- Primary lubricated systems have an increased displacement resistance

Mono Rail load capacities

Туре	Load ca [l	pacities V]	s	tatic moment [Nm]	S		Туре
	dyn. C	stat. C _{Orad} stat. C _{Oax}	M _x	M _y	M _z		
MRS15 MRS15W MRT15W	8500	13500	100	68	68		MRS3 MRS3 MRT3
MRT15SW	5200	6800	51	18	18		MRT3
MRS20 MRS20W MRT20W	14000	24000	240	146	146		MRS3 MRS3
MRT20SW	9500	14000	70	49	49		MRS3
MRS20L MRS20LW	16500	30000	300	238	238	Į	MRS3 MRT3
						1	MRT3
MRS25 MRS25W MRT25W	19500	32000	368	228	228		MRS3 MRS3
MRT25SW	12500	17500	175	69	69		MRS4 MRS4
MRS25L MRS25LW	26000	46000	529	455	455		MRT4
					Tab. 1		MRS4

Туре	Load ca [l	pacities V]	S	tatic moment [Nm]	S
	dyn. C	stat. C _{orad} stat. C _{oax}	M _x	M _y	M _z
MRS30 MRS30W MRT30W	28500	48000	672	432	432
MRT30SW	17500	24000	336	116	116
MRS30L MRS30LW	36000	64000	896	754	754
MRS35 MRS35W MRT35W	38500	62000	1054	620	620
MRT35SW	25000	36500	621	209	209
MRS35L MRS35LW	48000	83000	1411	1098	1098
MRS45 MRS45W MRT45W	65000	105000	2363	1378	1378
MRS45L MRS45LW	77000	130000	2925	2109	2109
MCS55 MCS55W	123500	190000	4460	3550	3550
MCS55L	155000	249000	5800	6000	6000

Tab. 2

Miniature Mono Rail load capacities

Standard width

Fig. 12

Туре	Load ca [N		Sta	atic momei [Nm]	nts									
	dyn. C ₁₀₀	stat. C ₀	M _x	M _y	M _z									
MR07MN	890	1400	5.2	3.3	3.3									
MR09MN	1570	2495	11.7	6.4	6.4									
MR12MN	2308	3465	21.5	12.9	12.9									
MR15MN	3810	5590	43.6	27	27									
		Tal												

Large width

Fig. 13

M R

		Sta	atic momei [Nm]	nts
dyn. C ₁₀₀	stat. C ₀	M _x	M _y	M _z
2030	3605	33.2	13.7	13.7
3065	5200	63.7	26.3	26.3
5065	8385	171.7	45.7	45.7
	(No. 100) (No. 1	2030360530655200	Image: Normal System Stat. Cold Mx dyn. Cold stat. Cold Mx 20300 36055 33.2 30655 52000 63.7	Image:

Product dimensions

MRS – carriage with flange

* If additional sealing options are used, the dimension L changes. [see Tab. 15 Page MR-15].

Туре			ystem [mm]					SI	ider N (mm					Weight [kg]				Rail M [mm				Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	М	g ₂	L,	L ₂	т	S		W ₁	H ₁	Р	d	D	g ₁	L ₃ *	
MRS15-A	24	47	16	2.5	73	38	30	M5	8	40	5	Ø3	4,3	0.19	15	14		4.5	7.5	5.8		1.4
MRS20-A	30	63	01 5	2.9	85	53	40	M6	0	48.8			7	0.4	20	18		6	9.5	9		2.6
MRS20L	30	63	21.5	5	95.7	53	40	IVIO	9	63.4				0.52	20	18	60	0	9.5	9		2.0
MRS25-A	36	70	23.5	4.9	94.7	57	45	M8		57			7.8	0.57	23	22		7	11	9.5		3.6
MRS25L	30	70	23.0	7	113	57	40	IVIO	12	79.1	12	M6 x 1	1.0	0.72	23	22		1	11	9.0	20	3.0
MRS30-A	42	90	31	6.9	117	72	52		12	72	12	IVIO X I	7	1.1	28	26						5.2
MRS30L	42	90	51	9	135.3	12	JZ	M10		94.3			1	1.4	20	20	80	9	14	12.5		0.2
MRS35-A	48	100	33	7.6	118	82	62	WITU	13	80			8	1.6	34	29	00	9	14	12.0		7.2
MRS35L	40	100	33	9.5	139.6	02	02		15	105.8			0	2	34	29						1.2
MRS45-A	60	120	37.5	12.05	146.7	100	80	M12	15	105	17	M8 x 1	8.5	2.7	45	38	105	14	20	17.5	22.5	12.3
MRS45L	00	120	37.5	14	167	100	80	IVI I Z	15	129.8	17	IVIO X I	8.5	3.6	40	38	105	14	20	17.5	22.5	12.3
* Only applies	s when	using r	max. rail le	engths (se	ee Ordering	key)																Tab. 5

Туре		-	/stem mm]					SI	ider N [mm					Weight [kg]				Rail M [mm]				Weight [kg/m]
	Н	W	W ₂	H ₂	L	$L P_2 P_1 M g_2 L_1 L_2 T S$									W ₁	H	Р	d	D	g ₁	L ₃ *	
MCS55	70	140	12 5	12,7	181.5	116	95	M14	21	131	12	M8 x 1	20	5.4	53	38	120	16	23	20	30	14.5
MCS55L	70	140	43,5	12,7	223.7	110	90	IVI I 4	21	173	12	IVIO X I	20	7.1	55	30	120	10	23	20	30	14.0
* Only appli	es wher	n using n	nax. rail l	engths (se	ee Ordering	key)																Tab. 6

Fig. 14

MRS...W – carriage without flange

* If additional sealing options are used, the dimension L changes. [see Tab. 15 Page MR-15].

Туре			ystem [mm]						Slider M [mm]					Weight [kg]			F	lail MF [mm]				Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	М	g ₂	L,	L ₂	т	S		W ₁	H ₁	Р	d	D	g ₁	L ₃ *	
MRS15W-A	28	34	9.5	2.5	73	26	26	M4	6.4	40	5	Ø3	8,3	0.21	15	14		4.5	7.5	5.8		1.4
MRS20W-A	30	44	12	2.9	85	32	36	M5	8	48.8			7	0.31	20	18		6	9.5	9		2.6
MRS20LW	30	44	12	5	95.7	32	50 35	CIVI	0	63.4			1	0.47	20	10	60	0	9.0	9		2.0
MRS25W-A	40	48	12.5	4.9	94.7	35	35	M6	9.6	57			11.8	0.45	23	22		7	11	9.5		3.6
MRS25LW	40	40	12.0	7	113	30	50	IVIO	9.0	79.1	12	M6 x 1	11.0	0.56	23	22		1	11	9.0	20	5.0
MRS30W-A	45	60	16	6.9	117	40	40			72	12	INIO X I	10	0.91	28	26						5.2
MRS30LW	40	00	10	9	135.3	40	60	M8	12.8	94.3			10	1.2	20	20	80	9	14	12.5		0.2
MRS35W-A	55	70	18	7.6	118	50	50	IVIO	12.0	80			15	1.5	34	29	00	9	14	12.0		7.2
MRS35LW	55	70	10	9.5	139.6	50			105.8			10	1.9	34	29						1.2	
MRS45W-A	70	86	20.5	12.05	146.7	60	16	105	17	M8 x 1	18.5	2.3	45	38	105	14	20	17.5	22.5	12.3		
MRS45LW	70	00	20.3	14	167	00	60 M10 80	10	129.8	17	IVIO X I	10.0	2.8	40	30	105	14	20	17.5	22.0	12.5	
* Only applies wh	en usir	ig max	. rail leng	oths (see C	ordering key	y)																Tab. 7

Only applies when using max. rail lengths (see Ordering key)

Туре			stem nm]					:	Slider N [mm]					Weight [kg]			F	Rail MR [mm]	C			Weight [kg/m]	
	H	W	W ₂	H ₂	L	P ₂	P ₁	М	g ₂	L ₁	L ₂	Т	S		W ₁	H	Р	d	D	g ₁	L ₃ *		
MCS55W	80	100	23.5	12.7	181.5	75	75	M12	19	131	12	M8 x 1	30	5.2	53	38	120	16	23	20	30	14.5	
* Only applies	when u	ising ma	x. rail ler	ngths (se	e Ordering	key)																Tab. 8	

* Only applies when using max. rail lengths (see Ordering key)

Туре			rstem nm]					:	Slider N [mm]					Weight [kg]				Rail MF [mm]				Weight [kg/m]
	H	W	W ₂	H ₂	L	P ₂	P ₁	М	g ₂	L,	L ₂	т	S		W ₁	H	Р	d	D	g ₁	L ₃ *	
MRT15W-A	24	34	9.5	2.5	73	26	26	M4	5.6	40	5	Ø3	4.3	0.17	15	14		4.5	7.5	5.8		1.4
MRT15SW	24	34	9.0	4.6	50.6	20	-	1114	5.0	21.6	0	23	4.5	0.1	10	14		4.0	7.5	5.0		1.4
MRT20W-A	28	42	11	2.9	85	32	32	M5	7	48.8			5	0.26	20	18	60	6	9.5	9		2.6
MRT20SW	20	42		5	60.3	52	-	IVIJ	1	28			5	0.17	20	10	00	0	5.5	5		2.0
MRT25W-A	33	48	12.5	4.9	94.7	35	35	M6	8.4	57			4.8	0.38	23	22		7	11	9.5	20	3.6
MRT25SW	00	40	12.0	7	65.5	55	-	IVIO	0.4	31.5	12	M6 x 1	4.0	0.21	23	22		'	11	9.0	20	5.0
MRT30W-A	42	60	16	6.9	117	40	40			72	12	INIO X T	7	0.81	28	26						5.2
MRT30SW	42	00	10	9	80	40	-	M8	11.2	38.6			'	0.48	20	20	80	9	14	12.5		J.2
MRT35W-A	48	70	18	7.6	118	50	50	IVIO	11.2	80			8	1.2	34	29	00	9	14	12.0		7.2
MRT35SW	40	10	10	9.5	79.7	50	-			45.7			0	0.8	04	29						1.2
MRT45W-A	60	86	20.5	12.05	146.7	60	60	M10	14	105	17	M8 x 1	8.5	2.1	45	38	105	14	20	17.5	22.5	12.3
* Only applies w	hen us	ing ma	x. rail ler	ngths (see	e Ordering	ı key)																Tab. 9

MR-10

MRR...F – rails mounted from below

Rail type	W ₁ [mm]	H ₁ [mm]	L ₃ * [mm]	P [mm]	F	g ₁ [mm]
MRR15F	15	14			M5	8
MRR20F	20	18		60	M6	10
MRR25F	23	22	20		IVIO	12
MRR30F	28	26		00	MO	15
MRR35F	34	29		80	M8	17
MRR45F	45	38	22.5	105	M12	24
* Only applies when using m	ax. rail lengths (see Ordering ke	/)			Tab. 10

Only applies when using max. rail lengths (see Ordering key)

Tab. 10

Miniature Mono Rail standard width

Туре	System [mm]									
	Н	W	W ₂	H ₂						
MR07MN	8	17	5	6.5						
MR09MN	10	20	5.5	7.8						
MR12MN	13	27	7.5	10						
MR15MN	16	32	8.5	12						
			T	ab. 11						

Туре	Type Slider [mm]								Rail [mm]								
	L	P ₂	P ₁	М	g ₂	L,	т	S	Ø	Weight [kg]	W ₁	H,	Р	d	D	g ₁	Weight [kg/m]
MR07MN	23.7	12	8	M2	2.5	14.3	2.8	1.6	1.1	0.008	7	4.7	15	2.4	4.2	2.3	0.215
MR09MN	30.6	15	10	М3	3.0	20.5	3.3	2.2	1.3	0.018	9	5.5	20	3.5	6	3.5	0.301
MR12MN	35.4	20	15	М3	3.5	22.0	4.3	3.2	1.3	0.034	12	7.5	25	3.5	6	4.5	0.602
MR15MN	43.0	25	20	М3	5.5	27.0	4.3	3.3	1.8	0.061	15	9.5	40	3.5	6	4.5	0.93
																	Tab. 12

Miniature Mono Rail large width

Туре	System [mm]										
	H W W ₂ H ₂										
MR09WN	12	30	6	8.6							
MR12WN	14	40	8	10.1							
MR15WN	16	60	9	12							
				Tab. 13							

Туре	Type Slider [mm]						Rail [mm]											
	L	P ₂	P ₁	М	g ₂	L,	Т	S	Ø	Weight [kg]	W ₁	H,	Р	P ₃	d	D	g ₁	Weight [kg/m]
MR09WN	39.1	21	12	М3	3	27.9	4	2.6	1.3	0.037	18	7.3	30	-	3.5	6		0.94
MR12WN	44.4	28	15	М3	3.5	31.0	4.5	3.1	1.3	0.065	24	8.5	40	-	4.5	8	4.5	1.472
MR15WN	55.3	45	20	M4	4.5	38.5	4.5	3.3	1.8	0.137	42	9.5	40	23	4.5	8		2.818

Tab. 14

M R

Accessories

Safety equipment and covers

End seal

Carriages of Mono Rail profile rails are equipped with end seals for contamination protection as standard.

Side seal

Carriages are equipped with side seals to prevent permeation of contaminates.

No side seals are available for carriages in long or short version (...SW/...L/...LW).

Double seal

To improve the protection from contamination at higher loads the carriage can be provided with double end seals.

Metal deflector (non-contacting)

Metal cuttings or coarse contamination can damage the end seals of the carriage. Metal deflector covers protect seal lips against damage.

Fig. 23

Seal variants:

A: Carriage with end and side seal

- C: Carriage with end and side seals and metal deflector
- D: Carriage with double end seal and side seal
- E: Carriage with double end seal and side seal and metal deflector

Seal variant		А	С	D	E				
Slider type ¹	Size	Changed length L* [mm]							
	15	73	75	79	83				
1100	20	85	87	91	95.2				
MRS MRSW	25	94.7	97.7	101.4	106.6				
MRT	30	117	119	132	136				
MRTW	35	118	120	128	132.6				
	45	146.7	148.7	157.4	161.9				
MCS MCSW MCT MCTW	55	-	192	191	200				
	20	-	99.5	103.5	107.7				
MRSL	25	-	117.7	121.4	126.6				
MRSLW	30	-	138.3	151.3	155.3				
MRTLW	35	-	143.6	151.6	156.2				
	45	-	171.2	179.9	184.4				
MCSL MCSLW MCTLW	55	-	234.2	233.2	242.2				
	15	-	54.6	58.6	62.6				
	20	-	64.1	68.1	72.3				
MRTS MRTSW	25	-	70.2	73.9	79.1				
	30	-	83	96	100				
	35	-	83.7	91.7	96.3				
					Tab. 15				

Length of carriages change when using the corresponding seal variants

 $^{\rm 1}$ No side seals are available for carriages in long or short version (...S / S...W and ...L / L...W)

* For comparison see Chapter 3 Product dimensions, pg. MR-8ff

Μ

R

Metal cover strip

A rail cover strip made of corrosion resistant steel is available to improve the seal after guide rail installation. The metal cover strip is 0.3 mm wide and can have a maximum length of 50 m.

Size	Width [mm]
15	10
20	13
25	15
30	20
35	24
45	32
55	38
	Tab. 16

Flush cap

Metal debris and other foreign substance can collect in the fixing holes of the rails and thus end up the carriage.

To prevent penetration of contamination in the carriage, the fixing holes should be capped with perforated caps flush with the rail surface.

Flush caps are made of wear and oil resistant synthetic resin. Various sizes of perforated caps for the counter sunk holes for hexagon socket bolts M3 to M22 are included as standard in the scope of supply.

Flush caps are driven in flush with the rail surface with light hammer taps using a flat piece of metal (see fig. 25).

Clamping elements

Mono Rail profile rails can be secured with manual or pneumatic clamping elements. Areas of application are:

- Table cross beams and sliding beds
- Width adjustment, stops
- Positioning of optical equipment and measuring tables

Manual clamp elements HK

The HK series is a manually activated clamping element.

Contact profiles press synchronously on the free surfaces of the profile rail by using the freely adjustable clamping lever.

The floating mounted contact profiles guarantee symmetrical introduction of force on the guide rail.

Special characteristics of the clamping elements HK:

- Simple and safe design
- Floating contact profile
- Precise positioning
- Holding force up to 2,000 N

Variants:

An additional adapter plate must be used depending on the height of the carriage (see pg. MR-20, tab. 19).

Activation:

Standard with hand lever, further activation options, e.g. using DIN 912 screw, possible on request.

Pneumatic clamp elements MK / MKS

The patented wedge slide gear puts into effect high holding forces. The pressurised medium moves the wedge slide gear in the longitudinal direction.

Contact profiles press with high force on the free surfaces of the profile rail by the resulting cross movement. MK is an element that closes with pneumatic pressure. The custom design MKS closes with spring energy storage and is opened via air impingement.

Special characteristics of clamp elements MK / MKS:

- Short shape
- High clamp forces
- Precise positioning
- High axial and horizontal rigidity

Areas of application of MK:

- Positioning axes
- Setting vertical axes
- Positioning lifting gear
- Clamping machine tables

Variants:

An additional adapter plate must be used depending on the height of the carriage (see pg. MR-20, tab. 20).

Connection options:

The basic MK / MKS series versions are equipped with air connections on both sides, i.e. the factory default settings air connections and the ventilation filter can be exchanged to the opposite side surfaces.

Custom design MKS opens with impingement of an air pressure of > 5.5 bar.

Areas of application of MKS:

- Clamping with drop in pressure (Normally Open)
- Clamping without power required (Normally Closed)

Manual clamp HK

Туре	Size	Holding force	Tightening torque) Dimensions [mm]										м	
		[N]	[Nm]	Н	H	H ₂	H ₃	W	W ₁	W ₂	L	P ₁	P ₂	g ₁	
HK1501A	15		F	24	12.5	6.5	4.4	47	20 F	00 F	25	17	17	5	M4
HK2006A	20	1200	5	28	17.5	5	44	60	30.5	33.5	24	15	15	6	M5
HK2514A	25		7	33	15	11.5	63	70	38.5	41.5	30	20	20	0	MG
HK3001A	30			42	21.5	12		90			39	22	22	8	M6
HK3501A	35	2000	15	48	21.0	16	78	100	46.5	50.5	29	24	24	10	M8
HK4501A	45	2000		60	26.5	18		120			44	26	26	14	M10
HK5501A	55		22	70	31	21	95	140	56.5	61.5	49	30	30	16	M14
															Tab. 17

Pneumatic clamp MK / MKS

* Changed dimensions when using the adapter plate, see pg. MR-20, tab. 20

Туре	Size	MK holding force	MKS holding force	Dimensions [mm]										М			
		[N]	[N]	Н	H ₂	W	W ₁	W ₂	B ₄	L ₁ *	L	P ₁	P ₂	P ₃	Q [Ø]	g ₁	
MK / MKS 1501A	15	650	400	24	2.5	55	6	34	12	58	39	15	15	15.5	16	4.5	M4
MK / MKS 2001A	20	1000	600	28	2.0	66	0	43	14.4	61	29	20	20	5	20	5	M5
MK / MKS 2501A	25	1200	750	36	8	75		49	15.5	56	35	20	20	5	22	8	M6
MK / MKS 3001A	30	1750	1050	42	7	90		58	20.5	68	39	22	22	8.5	25	10	M8
MK / MKS 3501A	35	2000	1250	48	11.5	100	5	68	20.5	67	29	24	24	7.5	28	10	IVIO
MK / MKS 4501A	45	0050	1450	60	16.5	120		78.8	26.8	0.0	49	26	26	11.5	30	15	MIO
MK / MKS 5501A	55	2250	1450	70	21.5	128		87	30.5	82	49	30	30	9.5	30	18	M10

* Only for model MKS

Tab. 18

M R

Adapter plate

For HK clamps

Clamp	Size	Slider type	Adapter plate	D
HK1501A	15	MRS, MRTW, MRTSW	-	24
IIKIJUTA	10	MRSW	PHK 15-4	28
	20	MRTW, MRTSW	-	28
HK2006A	20	MRS, MRSL, MRSW, MRSLW	PHK 20-2	30
HK2514A		MRTW, MRTSW	-	33
	25	MRS, MRSL,	-	36
HK2501A		MRSW, MRSLW	PHK 25-4	40
	00	MRS, MRSL, MRTW, MRTSW	-	42
HK3001A	30	MRSW, MRSLW	PHK 30-3	45
	05	MRS, MRSL, MRTW, MRTSW	-	48
HK3501A	35	MRSW, MRSLW	PMK 35-7	55
	15	MRS, MRSL, MRTW	-	60
HK4501A	45	MRSW, MRSLW	PHK 45-10	70
On request			-	68
	55	MCS, MCSL	-	70
HK5501A		MCSW	PHK 55-10	80
				Tab. 19

For MK / MKS clamps

Clamp	Size	Slider type	Adapter plate	D
MK / MKS	15	MRS, MRTW, MRTSW	-	24
1501A	10	MRSW	PMK 15-4	28
MK / MKS	20	MRTW, MRTSW	-	28
2001A	20	MRS, MRSL, MRSW, MRSLW	PMK 20-2	30
On request		MRTW, MRTSW	-	33
MK / MKS	25	MRS, MRSL, MRZ	-	36
2501A		MRSW, MRSLW	PMK 25-4	40
MK / MKS	30	MRS, MRSL, MRTW, MRTSW	-	42
3001A	50	MRSW, MRSLW	PMK 30-3	45
MK / MKS	35	MRS, MRSL, MRTW, MRTSW	-	48
3501A		MRSW, MRSLW	PMK 35-7	55
MK / MKS	45	MRS, MRSL, MRTW	-	60
4501A	40	MRSW, MRSLW	PMK 45-10	70
On request			-	68
MK / MKS	55	MCS, MCSL	-	70
5501A		MCSW	PMK 55-10	80 Tab. 20

Technical instructions

Mono Rail precision

Precision means the guide accuracy or the maximal deviation of the carriage based on the side and support surfaces during the movement along the rails.

Fig. 28

	Precision class [mm]								
	Normal [N]	High [H]	Precise [P]						
Height tolerance H	± 0.1	± 0.04	0 to -0.04						
Side tolerance W									
Height difference (Δ H)	0,03	0,02	0.01						
Width difference (Δ W)	0,05	0,02	0,01						
Guide accuracy of raceway C based on surface A	L	AC see graph in fig. 29	9						
Guide accuracy of raceway D based on surface B	ΔD see graph in fig. 29								
			Tab. 21						

Miniature Mono Rail precision

There are three precision classes to choose from for the Mono Rail Miniature profile rails: Classes P, H, and N are manufactured.

Fig. 30

	Precision classes	Precision P [µm]	High H [µm]	Normal N [µm]
н	Tolerance of height H	± 10	± 20	± 40
ΔН	Permissible height difference of different carriages at the same position on the rail	7	15	25
W ₂	Tolerance of width W_2	± 15	± 25	± 40
ΔW ₂	Permissible width difference of different carriages at the same position on the rail	10	20	30

Tab. 22

Running accuracy

Mono Rail Radial clearance / preload

Radial clearance describes the value for the radial movement of the carriage at a constant vertical load, while the carriage moves in longitudinal direction.

Preload is defined as an effective load on the rolling element in the interior of the carriage in order to remove an existing clearance or to increase the rigidity.

The Mono Rail profile rails are available in the four different preload classes G1, K0, K1 and K2 (see tab. 23). The preload influences the rigidity, precision and torque resistance and also affects the service life and displacement force.

The radial clearance for the respective preload classes are listed in table 24.

Degree of preload	Preload class	Preload		
With clearance	G1	0		
No clearance	KO	0		
Small preload	K1	0,02 x C*		
Average preload	K2	0,05 x C*		
* C is the dynamic load capacity see no MR-6 Tab 1 Tab 23				

C is the dynamic load capacity, see pg. MR-6, Tab. 1.

Tab. 23

Size	Radial clearance of the preload classes [µm]			
	G1	КО	K1	K2
	Impact free mo- vement, compen- sation of assembly tolerances	Impact free and easy movement	Small moments, one rail application, low vibrations	Average vibrations and moments, light impacts
15	+4 to +14	-4 to +4	-12 to -4	-20 to -12
20	+5 to +15	-5 to +5	-14 to -5	-23 to -14
25	+6 to +16	-6 to +6	-16 to -6	-26 to -16
30	+7 to +17	-7 to +7	-19 to -7	-31 to -19
35	+8 to +18	-8 to +8	-22 to -8	-35 to -22
45	+10 to +20	-10 to +10	-25 to -10	-40 to -25
55	+12 to +22	-12 to +12	-29 to -12	-46 to -29
				Tab. 24

Miniature Mono Rail Preload

The Mono Rail Miniature profile rails are available in the three different preload classes V₀, V_s and V₁ (see table 25). The preload influences the rigidity, precision and torque resistance and also affects the product service life and displacement force.

Туре		Preload classes	
	Small clearance Very quiet running V _o [µm]	Standard Very quiet and precise running V _s [µm]	Small preload High rigidity, vibration reduced, high precision, good load balance V ₁ [µm]
MR07	from +5 to +2	from +1 to -2	from -2 to -4
MR09	from +5 to +2	from +2 to -2	from -2 to -5
MR12	from +6 to +2	from +2 to -2	from -2 to -5
MR15	from +7 to +2	from +2 to -3	from -2 to -6
			Tab. 25

Anticorrosive protection

There are numerous application-specific surface treatments available for profile rails of the Mono Rail product family.

Mono Rail lubrication

Profile rails must generally be lubricated before commissioning. They can be lubricated with oil or grease.

The correct lubricant selection has a large influence on the service life and the function of the profile rail, insufficient lubrication and tribocorrosion can ultimately lead to total failure.

Important instructions for lubrication

- Mono Rail profile rails must be lubricated for operation.
- The carriage must be moved back and forth during lubrication.
- The lubricant is inserted through a lubrication nipple.
- There should be a thin film of lubricant on the rail surface at all times.
- Please inform us in advance if the guides are to be used in acid or base containing environments or in clean rooms.

Grease lubrication

We recommend the use of a lithium emulsified lubricant NLGI Class 2 for lubrication.

Relubrication

- Relubrication of the system must be done before the lubricant used is dirty or shows discolouration.
- Relubrication is performed at operating temperature. The carriage must be moved back and forth during relubrication.
- If the stroke is <2 or >15 times the carriage length, the lubrication intervals should be more often.

Lubrication condition on delivery

Single parts (separate sliders and rails) are provided with an anticorrosion oil and they have to be lubricated first thing after assembly. Assemblies are provided with lubrication grease applied.

Initial lubrication and relubrication

Self-lubricating

The carriages of the following sizes have a self-lubrication element to extend lubrication intervals.

Size	Initial lubrication grease [cm³]	Relubrication [cm ³]	Initial lubrication oil [cm³]		
15	1.3	1.1	1.5		
20	2.3	2	2.5		
25	2.8	2.5	3.5		
30	3.5	3	4.5		
55	5.5	4	5.5		
The given lubrication quantities apply to preload K1 and speeds $\leq 1 \text{ m/s}$ Tab. 26					

For more information please contact Rollon technical support. All linear rails of the Miniature Mono Rail series are made of stainless steel.

As well as reducing friction and wear, lubricants also serve as sealant, noise damper and corrosion protection for the linear guide. Different lubricants for special applications are available upon request. For more information please contact Rollon technical support.

- Primary lubricated systems have an increased displacement resistance.
- Please contact Rollon technical support if the rail will be oriented vertically.
- If the stroke is <2 or >15 times the carriage length, the lubrication intervals should be shortened.

Oil Iubrication

We recommend a synthetic oil for operating temperatures between 0 °C and +70 °C. For application-specific custom lubrication, please contact Rollon technical support.

Lubrication intervals

Operating speed, stroke length and ambient conditions influence the selection of time between lubrication intervals. Establishing a safe lubrication interval is based exclusively on the experienced practiced values determined on site. However, in any case a lubrication interval should not be longer than one year or 100 km of use, depending on the value reached first.

Not self-lubricating

The carriages of sizes 35 and 45 are not self-lubricating due to the design.

Size	Initial lubrication grease [cm³]	Relubrication [cm³]	Initial lubrication oil [cm³]	
35	3.5	3	3.5	
45	4.5	3.5	4.5	
The given lubrication quantities apply to preload K1 and speeds \leq 1 m/s Tab. 2				

The given lubrication quantities apply to preload K1 and speeds \leq 1 m/s

Miniature Mono Rail Iubrication

Function

The contact points between ball and track are separated from each other by a microscopically thin oil film. The lubrication effects:

- Reduction of friction
- Reduction of wear
- Corrosion protection
- Better thermal distribution and therefore increased of service life

Fig. 33

Important instructions for lubrication

- Mono Rail Miniature profile rails must be lubricated for operation.
- The carriage must be moved back and forth during lubrication.
- The lubricant can also be applied to the tracks.
- The lubricant can be injected into the lubrication holes on both sides of the carriage.
- There should be a thin film of lubricant on the rail surface at all times.
- Please inform us in advance if the guides are to be used in acid or base containing environments or in clean rooms.
- Please contact the sales department if the oil lubrication should be used for vertical use of the guide.
- If the stroke is < 2 or > 15 times the carriage length, the lubrication intervals should be more often.

Туре	First lubrication [cm ³]
MR07MN	0.12
MR09MN	0.23
MR12MN	0.41
MR15MN	0.78
	Tab. 28

Туре	First lubrication [cm³]
MR09WN	0.30
MR12WN	0.52
MR15WN	0.87
	T-1-00

Tab. 29

Grease lubrication

When using grease lubrication, we recommend synthetic-oil based lithium grease with a viscosity according to ISO VG 32 to ISO VG 100.

Oil lubrication

We recommend CLP or CGLP synthetic oil conforming to DIN 51517 or HLP to DIN 51524 and a viscosity range conforming to ISO VG 32 to ISO VG 100 for operating temperatures between 0 °C and +70 °C. We recommend a viscosity according to ISO VG 10 for use at low temperatures. For application-specific special lubrication please contact Rollon technical support.

ISO VG 10	Ê	Viscosity of 10 $\frac{mm^2}{s}$	at 40 °C
ISO VG 32	Ê	Viscosity of 32 $\frac{mm^2}{s}$	at 40 °C
ISO VG 100	Ê	Viscosity of 100 $\frac{mm^2}{s}$	at 40 °C

Fig. 34

Lubrication intervals

Operating speed, stroke length and ambient conditions influence the selection of time between lubrication intervals. Establishing a safe lubrication interval is based exclusively on the experienced practiced values determined on site. However, in any case a lubrication interval should not be longer than one year or 100 km of use, depending on the value reached first.

Relubrication

- Relubrication of the system must be done before the lubricant used is dirty or shows discolouration.
- Relubrication is performed at operating temperature.
 During relubrication, the carriage should be moved back and forth.
- If the stroke is < 2 or > 15 times the carriage length, the lubrication intervals should be more often.

Lubrication condition on delivery

Single parts (separate sliders and rails) are provided with an anticorrosion oil and they have to be lubricated first thing after assembly. Assemblies are provided with lubrication oil applied.

Mono Rail Iubrication nipple

The following lubrication nipples are part of the standard delivery:

Lubrication nipple	Size
NLA01	15
	20
NLB02	25
NLDUZ	30
	35
NLB04	45
NLDU4	55
	Tab. 30

Other lubrication nipples, such as lubrication adapters with hose inlet or with quick-coupling, are available on request. Please observe that the thread lengths (see fig. 35) can be changed when using additional deflectors and end seals. For more information please contact Rollon technical support.

Mono Rail loading

The given static load capacity for each carriage represents the maximum permissible load value, which if exceeded causes permanent deformations of the raceways and adverse effects of the running properties. Checking the load must be done as follows:

- through determination of the simultaneously occurring forces and moments for each carriage
- by comparison of these values with the corresponding load capacities.

The ratio of the actual load to maximum permissible load may be as large as the reciprocal of the accepted safety factor, S_{n} , at the most.

$$\frac{P_{0rad}}{C_{0rad}} \leq \frac{1}{S_0} \qquad \qquad \frac{P_{0ax}}{C_{0ax}} \leq \frac{1}{S_0} \qquad \qquad \frac{M_1}{M_x} \leq \frac{1}{S_0} \qquad \qquad \frac{M_2}{M_y} \leq \frac{1}{S_0} \qquad \qquad \frac{M_3}{M_z} \leq \frac{1}{S_0}$$

The above formulas are valid for a single load case.

If two or more forces are acting simultaneously, please check the following formula:

$$\frac{P_{0rad}}{C_{0rad}} + \frac{P_{0ax}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

$$P_{0rad} = \text{effective radial load (N)}$$

$$P_{0ax} = \text{effective axial load (N)}$$

$$C_{0ax} = \text{permissible axial load (N)}$$

$$M_{1}, M_{2}, M_{3} = \text{external moments (Nm)}$$

$$M_{x'}, M_{y'}, M_{z} = \text{maximum permissible moments}$$
in the different loading directions (Nm)

Fig. 37

Fig. 36

Safety factor

Operating conditions	S ₀
Normal operation	1 ~ 2
Loading with vibration or shock effect	2 ~ 3
Loading with strong vibration or impacts	≥ 3
	Tab. 31

The safety factor S_0 can lie on the lower given limit if the occurring forces can be determined with sufficient precision. If shock and vibration are present, the higher value should be selected. For dynamic applications higher safety is required. Please contact Rollon technical support.

Mono Rail service life

Calculation of service life:

The dynamic load capacity C is a conventional variable used for calculating the service life. This load corresponds to a nominal service life of 50 km. The relationship between calculated service life L_{km} (in km), dynamic load capacity C (in N) and equivalent load P (in N) is given in the formula to the right:

The equivalent load P corresponds in its effects to the sum of the forces and moments working simultaneously on a slider. If these different load components are known, P results from the equation to the right:

$$L_{km} = (\frac{C}{P} \cdot \frac{f_c}{f_i})^3 \cdot 50 \text{ km} \qquad f_c = \text{contact factor} \\ f_i = \text{application coefficient}$$

$$\mathsf{P} = |\mathsf{P}_{0ax}| + |\mathsf{P}_{0rad}| + (\frac{|\mathsf{M}_1|}{\mathsf{M}_x} + \frac{|\mathsf{M}_2|}{\mathsf{M}_y} + \frac{|\mathsf{M}_3|}{\mathsf{M}_z}) \cdot \mathsf{C}_{0rad}$$

Fig. 39

Contact factor f

The contact factor f_c refers to applications in which several carriages pass the same rail section. If two or more carriages are moved over the same point on a rail, the static and dynamic loading values must be multiplied with the numbers from the table below:

Number of carriages 1 2 3 4 5 f_c 1 0.81 0.72 0.66 0.61

Application coefficient f_i

The application coefficient f_i can be understood as the dynamic safety factor. Refer to the table below for the values:

Operational conditions	Speed	f,
Neither external impacts nor vibrations	Low speed V \leq 15 m/min.	1 - 1.5
Light impacts or vibrations	Average speed $15 < V \le 60$ m/min.	1.5 - 2
Average and high external impacts or vibrations	High speed V > 60 m/min.	2 - 3.5
		Tab. 33
🔼 Miniature Mono Rail loading

Static load (P₀) and static moment (M₀)

Permissible static load

The permissible static load of the Mono Rail Miniature profile rail is limited by:

- Static load of each linear guide
- Permissible load of the fixing screws
- Permissible load of all components used in the surrounding construction
- Static safety factor, which is required by the corresponding application

The equivalent static load and the static moment are the largest load, or the largest moment, which are calculated based on formulas 3 and 4.

Static safety factor S₀

When observing the static safety factor S_0 the Mono Rail Miniature profile rails allow a permissible operation and high running precision as is required for each application. Calculation of the static safety factor S_0 : see fig. 39

- S₀ static safety factor
- $\mathrm{C_{\scriptscriptstyle 0}}$ static load capacity in loading direction (N)
- P₀ equivalent static load (N)
- M_o static moment in loading direction (Nm)
- M equivalent static moment in loading direction (Nm)

Static load capacity C₀

The static load capacity C_0 of ball recirculating guides is defined according to DIN 636, Part 2 as the only load which gives a Hertzian stress of 4,200 MPa with the existing lubrication between track and balls in the center of the highest loaded contact surface.

Note: In the loading center, there is a permanent deformation of approx 0.01 % of the ball diameter under this load (according to DIN 636, Part 2).

$S_0 = C_0 / P_0$	Formula 1	Operating conditions	S ₀
$S_{0} = M_{0} / M$	Formula 2	Normal operation	1 ~ 2
$P_0 = F_{max}$	Formula 3	Loading with vibration or shock effect	2 ~ 3
$M_0 = M_{max}$	Formula 4	High precision and smooth running	≥ 3

Fig. 40

Miniature Mono Rail service life

An example of a profile rail or a lot of identical profile rails under the same running conditions, which use ordinary materials with normal manufacturer's quality and operating conditions, can reach 90 % of the calculated service life (as per DIN 636 Part 2). By taking 50 km traverse as a basis, the dynamic load capacity is usually 20 % over the values as per DIN. The relationship between the two load capacities can be seen from formulas 5 and 6.

Calculation of service life

Formulas 7 and 8 are used for calculating the service life, if equivalent dynamic load and average speed are constant.

$C_{(50)} = 1,26 \cdot C_{(100)}$	Formula 5	L = service life based on 100,000 (m)
$C_{(100)} = 0.79 \cdot C_{(50)}$	Formula 6	$L_h =$ service life (h) C = dynamic load capacity (N)
$L = (\frac{C_{100}}{P})^3 \cdot 10^5$	Formula 7	P = equivalent dynamic load (N) S = stroke length (m)
$L_{h} = \frac{L}{2 \cdot s \cdot n \cdot 60} = \frac{L}{V_{m}} \cdot (\frac{C_{100}}{P})^{3}$	Formula 8	n = stroke frequency (min $^{-1}$) V _m = average speed (m/min)

Fig. 41

Dynamic load capacity C

If the dynamic loads work vertically on the last zones with equal size and direction, the calculated service life of the linear guide can theoretically reach 100 km piston travel (as per DIN 636, Part 2).

Combined loads in combination with moments

If both loads and moments work on the profile rails, the equivalent dynamic load is calculated with formula 13. According to DIN 636, Part 1, the equivalent load should not exceed $\frac{1}{2}$ C.

Equivalent dynamic load and speed

With changing load and speed, these must be considered individually since each parameter helps determine the service life.

Equivalent dynamic load

If only the load changes, the equivalent dynamic load can be calculated with formula 9.

Equivalent speed

If only the speed changes, the equivalent speed is calculated with formula 6. If speed and load change, the equivalent dynamic load is calculated with formula 11.

Combined dynamic load

With combined exterior load in an arbitrary angle, the equivalent dynamic load is calculated with formula 12.

$$P = {}^{3}\sqrt{\frac{q_{1} \cdot F_{1}^{\ 3} + q_{2} \cdot F_{2}^{\ 3} + \cdots + q_{n} \cdot F_{n}^{\ 3}}{100}}$$
Formula 9

$$\overline{v} = \frac{q_1 \cdot v_1 + q_2 \cdot v_2 + \cdots + q_n \cdot v_n}{100}$$
 Formula 10

$$P = {}^{3}\sqrt{\frac{q_{1} \cdot v_{1} \cdot F_{1}^{\ 3} + q_{2} \cdot v_{2} \cdot F_{2}^{\ 3} + \cdots + q_{n} \cdot v_{n} \cdot F_{n}^{\ 3}}{100}}$$
 Formula 11

$$P = |F_{x}| + |F_{y}|$$
 Formula 12

$$P = |F_{x}| + |F_{y}| + (\frac{|M_{1}|}{M_{x}} + \frac{|M_{2}|}{M_{y}} + \frac{|M_{3}|}{M_{z}}) \cdot C_{0}$$
 Formula 13

Р	= equivalent dynamic load (N)	
q	= stroke (in %)	
F,	= individual load levels (N)	
V	= average speed (m/min)	
\overline{V}	= individual speed levels (m/min)	
F	= external dynamic load (N)	
F _y	= external dynamic load - vertical (N)	
F _x	= external dynamic load - horizontal (N)	
C ₀	= static load capacity (N)	
M ₁ , M ₂ , M ₃	= external moments (Nm)	
M _x , M _y , M _z	= maximum permissible moments in the different	
	loading directions (Nm)	
	Fig. 42	

R

Μ

Friction / displacement resistance

Mono Rail profile rails have a low friction characteristic and thus low displacement resistance. The low start-up friction (breakaway force) is almost identical to the moving friction (running resistance).

The displacement resistance is dependent upon several factors:

- Friction of the sealing system
- Friction of the balls with each other
- Friction between balls and redirection
- Rolling resistance of the balls in the running grooves
- Resistance of lubricant in the carriage
- Resistance by contamination in the lubricant
- Preload for increase of rigidity
- Moment load

Resistance of the seals

Туре	f [N]
MRS15	0.15
MRS20	0.2
MRS25	0.35
MRS30	0.7
MRS35	0.8
MRS45	0.9
MCS55	1.0
	Tab. 34

Fig. 43

Displacement resistance

The following formula is used for general approximate calculation of the displacement resistance. Please note that the level of preload or the viscosity of the lubricant used can also influence the displacement resistance.

$$\begin{aligned} F_m &= \text{Displacement resistance (N)} \\ F_m &= \mu \cdot F + f \\ F_m &= \text{Coefficient of friction} \\ f &= \text{Resistance of the seals (N)} \end{aligned}$$

Fig. 44

Mono Rail profile rails have a coefficient of friction of approx. $\mu=0.002$ - 0.003.

Mono Rail installation instructions

The given radii and shoulder heights in the table must be observed when assembling rails and carriages on the stop edges to ensure perfect seating of carriages or raceways.


```
Fig. 45
```

Size	Maximum level of incline Sm [mm]	Maximum height of rail shoulder Hr [mm]	Maximum height of rail shoulder when using the side seal Hr* [mm]	Maximum height of slider shoulder Hc [mm]	Required bolt lengths (rails) Lv [mm]
15	0.0	4	1.9	5	M4 x 16
20	0.8	4.5	2.4	6	M5 x 20
25		6	3.9	7	M6 x 25
30	1.2	8	5.9	8	M0 v 20
35		8.5	6.6	9	M8 x 30
45	1.6	12	10.5	11	M12 x 40
55	1.6	13	-	12	M14 x 45
* For use of various seals, see	og. MR-14, fig. 20				Tab. 35

M R

Assembly precision

The maximum permissible deviations of the rail surfaces for assembly are given in the following drawing (see fig. 46) and the table below (see tab. 36):

Size	Permissible tolerance for parallelism p1 [µm]			Permissible tolerance for parallelism p2 [µm]				
	K2	K1	K0	G1	K2	K1	K0	G1
15	-	18	25	35	-			190
20	18	20	25	30	50	85	130	190
25	20	22	30	42	70			195
30	27	30	40	55	90	110	170	250
35	30	35	50	68	120	150	210	290
45	35	40	60	85	140	170	250	350
55	45	50	70	95	170	210	300	420
								Tab. 36

The bolt sizes to be used and optimum tightening torques for rail assembly are listed in the table below (see tab. 37).

Screw quality 12.9, DIN 912	Tightening torque M _t [Nm]					
	Steel	Cast iron	Aluminium			
M4	4	3	2			
M5	9	6	4			
M6	14	9	7			
M8	30	20	15			
M12	118	78	59			
M14	157	105	78			
			Tab. 37			

MR-36

Miniature Mono Rail installation instructions

Shoulder heights and radius of stop edges

Rounding of the stop edges of the surrounding construction should be made so as to avoid contact with the edges of the carriage and the rail. Please observe the following table with the information on the radius and height of the stop surfaces.

Туре	h _i [mm]	r _{ımax} [mm]	h ₂ [mm]	r _{2max} [mm]	E [mm]
MR07M	1.2	0.3	2.8	0.3	1.5
MR09M	1.5	0.3	3	0.3	2.2
MR12M	2.5	0.5	4	0.5	3
MR15M	2.5	0.5	4.5	0.5	4

Dimensions of the stop edges

Туре	h ₁ [mm]	r _{ımax} [mm]	h ₂ [mm]	r _{2max} [mm]	E [mm]
MR09W	2.5	0.3	3	0.3	3.4
MR12W	2.5	0.5	4	0.5	3.9
MR15W	2.5	0.5	4.5	0.5	4
					Tab. 39

Geometric and positional accuracy of the mounting surfaces

Inaccuracies of the mounting surface negatively influence the running accuracy and reduce the service life of the Mono Rail Miniature profile rails. If the inaccuracies of the mounting surfaces exceed the values calculated using formulas 14, 15 and 16, the service life is shortened according to formulas 12 und 13.

Tab. 38

Mounting surface

The mounting surface should be ground or milled very finely and have a surface roughness of R_a 1.6.

Reference surface

Rail: Both sides of the rails can be used as a reference surface without further marks.

Slider: The reference surface is located across from the running side identified with a notch mark.

Calculation of the positional accuracy

e1 (mm) = b (mm) \cdot f1 \cdot 10 ⁻⁴	Formula 14
e2 (mm) = d (mm) \cdot f2 \cdot 10 ⁻⁵	Formula 15
e3 (mm) = f3 · 10 ⁻³	Formula 16

Fig. 50

Туре		$\mathbf{V}_{0}, \mathbf{V}_{S}$			V ₁	
	f1	f2	f3	f1	f2	f3
MR07MN	5	11	4	3	10	3
MR09MN	5	11	6	4	10	4
MR12MN	6	13	8	4	12	6
MR15MN	7	11	12	5	10	8
						Tab. 40

Туре		V ₀ , V _S			V ₁	
	f1	f2	f3	f1	f2	f3
MR09WN	2	7	6	2	5	4
MR12WN	3	8	8	2	5	5
MR15WN	2	9	11	1	6	7
						Tab. 41

Tightening torque for fixing screws (Nm)

Screw quality 12.9	Steel	Cast iron	Non-ferrous metal
M2	0.6	0.4	0.3
М3	1.8	1.3	1
M4	4	2.5	2
			Tab 40

Tab. 42

Composite rails

Guide rails longer than the one part maximum length (see Ordering key),

are put together from two or more rails.

When putting guide rails together, be sure that the register marks shown

in fig. 51 are positioning correctly.

These are fabricated axisymmetric for parallel application of composite

guide rails, unless otherwise specified.

Assembly process

Fixing guide rails:

(1) Whet the assembly surface with a whetstone and also remove burrs, unevenness and dirt (see fig. 53).

Note: All linear guides are preserved with anticorrosion oil at the factory. This protection must be removed before installation.

In doing so, please ensure that the surfaces are coated with low-viscosity oil for the purpose of further protection against corrosion.

(2) Carefully lay the guide rail on the assembly surface (see fig. 54) and slightly tighten the fixing screws so that the guide rail lightly touches the assembly surface (align the guide rail along the shoulder edge of the assembly surface, see fig. 55).

Note: The fixing screws of the linear guide must be clean. Check if the fixing holes are located in the correct place when you insert the bolts. A forced tightening of a fixing screw in an offset hole can negatively affect accuracy.

(3) Tighten the thrust bolts on the guide rail until there is close contact on the side stop surface (see fig. 56).

Fig. 56

(4) Tighten the fixing screws with a torque wrench to the prescribed torque (see pg. MR-36, tab. 37).

Note: For a high degree of accuracy, the fixing screws of the guide rail must be tightened in sequence outward from the centre (see fig. 57). (5) Assemble the other rails in the same manner to complete the installa-

Table assembly:

tion of the guide rails.

(6) Set the table carefully on the carriage and tighten the fixing screws only lightly.

(7) Press the carriage on the main guide side with the thrust bolts against the shoulder edge of the table and position the table.

(8) Tighten the fixing screws on the main side and the lateral side completely tight to finish the installation. Note:

To attach the table uniformly, tighten the fixing screws diagonally (see fig. 58). This method saves time when straightening the guide rail and makes the manufacture of positioning pins unnecessary, which considerably reduces assembly time.

Fig. 58

Installation examples

The following drawings illustrate some assembly examples for rail/carriage combinations corresponding to the structure of various machine frames:

Example 1:

Assembly of carriage and rail on shoulder edges

Example 3:

Securing carriage and rail using set pressure plates

Example 5:

Securing carriage and rail using bolts

Example 2:

Securing carriage and rail using set screws

Example 4:

Securing carriage and rail using taper gibs

Rail / Mono Rail slider system

Ordering example: MRS30W-H-K1-A-1-05960F-T-NIC

Rail composition: 1x3100+1x2860 (only for joint processed rails)

Hole pattern: 20-38x80-40//40-35x80-20 (please always indicate the hole pattern separately)

Notes on ordering: The rail lengths are always indicated as 5 digits with 0 prefixes

Rail

MRR	20	6860	Ν	F	т	NIC	
						Surface coatin	ng for rail optional
						see pg. MR-2	25, Anticorrosive protection
					Joint proces	sed rails option	al see pg. MR-39, Composite rails
				Rails bolted	from below, o	ptional <i>see</i>	e pg. MR-11
			Precision cla				
		Total rail len					
	Size						
Rail type							

Ordering example: MRR20-06850-NF-T-NIC

Rail composition: 1x2920+1x3940 (only for joint processed rails)

Hole pattern: 10-48x60-30//30-65x60-10 (please always specify the hole pattern separately)

Notes on ordering: The rail lengths are always indicated as 5 digits with 0 prefixes

Carriage

MRS35	Ν	K0	Α	NIC										
				Surface coat	see pg. MR-25, Anticorrosive protection									
		Seal variantssee pg. MR-15fPreload classsee pg. MR-23, tab. 23f												
	Precision cla	iss <i>see p</i>	g. MR-21, tal	<i>b. 21</i>										
Туре														

Ordering example: MRS35-N-K0-A-NIC

Rail / Miniature Mono Rail slider system

Ordering example: MR15MN-SS-2-V1-P-310 Hole pattern: 15-7x40-15, see fig. 61, tab. 44 / fig. 62, tab. 45

Mono Rail hole pattern

Rail

Hole pitch P [mm] L_{2max}*, L_{3max}* [mm] Size L_{2min}, L_{3min} [mm] L_{omax} [mm] 15 7 20 4000 60 25 20 30 80 3960 8.5 35 45 11.5 22.5 3930 105 55 120 13 30 3900

* Only applies when using max. rail lengths

Tab. 43

Miniature Mono Rail hole pattern >

Standard width

Size	L _{min} [mm]	Hole pitch P [mm]	L ₂ , L _{3min} [mm]	L ₂ , L _{3max} * [mm]	L _{max} [mm]
7	40	15	3	10	
9	55	20	4	15	1000
12	70	25	4	20	1000
15	70	40	4	35	
* does not apply to minimum	Tab. 44				

Large width

Fig. 61

Size	L _{min} [mm]	Hole pitch P [mm]	L ₂ , L _{3min} [mm]	L ₂ , L _{3max} * [mm]	L _{max} [mm]
9	50	30	4	25	
12	70	40	F	35	1000
15	110	40	5	35	
* does not apply to minimum	n (L _{min}) and maximum ra	il length (L _{max})			Tab. 45

																_
																-
																-
																_
																_
																-
																_
																_
																_
																-
																-
																-
																_
																-
																-
																_
																_
																_
																-
																-
																_
																_
																-
																_
																_
																-
																-
																_
																_

Guides suitable for all applications $// \sim$

TO SUPPORT YOU, WE DESIGN AND PRODUCE

Rollon's goal is to support you become **more competitive in your markets**, through technological solutions, design simplification, productivity, reliability, duration, and low maintenance.

We offer everything from **individual components to specifically designed**, mechanically integrated systems: the quality of our applications is an expression of our technology and competence.

ROLLONLAB: EXPERIMENTATION AND INNOVATION

RollonLab, a specialized laboratory where new products created by the R&D department are tested and optimized to perform beyond their technical limits through performance tests and strict quality controls.

RollonLab also tests products in simulations of different application scenarios, to guarantee that the client receives **highly competitive custom products.**

SUPPORT & CUSTOMIZATION

- Product training
- Custom product prototyping
- Application sizing and engineering
- 2D / 3D product drawings on demand
- On-site support for first installation and mock-ups
- Co-design service on sub-systems and full assemblies
- Internal laboratory for static abuse load and endurance tests

Thanks to the experience acquired through years of applications and research, we are able to provide high quality products specifically designed for your needs.

A NEW DIGITAL EXPERIENCE SURROUNDED BY ROLLON EXPERTS WHERE YOU CAN EASILY SELECT THE PRODUCT YOU NEED.

MY.ROLLON.COM

ROLLON S.p.A. - ITALY

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.com - infocom@rollon.com V

v

v

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - ukandireland@rollon.com

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rollon.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission.

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON - SOUTH AMERICA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rollon.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA

39-42, Electronic City, Phase-I, Hosur Road, Bangalore-560100 www.rollonindia.in - info@rollonindia.in

〒252-0131 神奈川県相模原市緑区西橋本1-21-4 橋本屋ビル 電話番号:(+81)042-703-4101 www.rollon.jp - info@rollon.jp

Distributor

V

v

v

