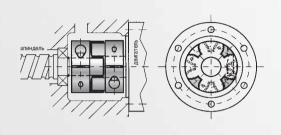
ТОЧНОСТЬ И КОМПАКТНОСТЬ

SERVOMAX® ЭЛАСТОМЕРНЫЕ СИЛЬФОНЫ

МОДЕЛЬНЫЙ РЯД ЕК | 2 – 2 200 НМ

ИДЕАЛЬНАЯ МУФТА С МОМЕНТОМ СИЛЫ ОТ 2 ДО 2 200 НМ

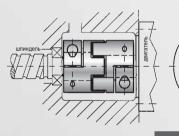
модели


ХАРАКТЕРИСТИКИ

возможности применения

с зажимной втулкой, компактный вариант

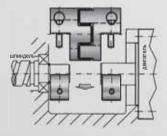
- укороченная конструкция
- небольшая инерция массы
- удобство монтажа



см. стр. 6

с зажимной втулкой

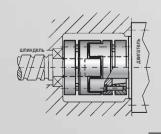
- хорошая точность вращения
- сбалансированное исполнение
- удобство монтажа



см. стр. 7

с разъемной зажимной втулкой, чашеобразное исполнение

- удобство монтажа
- монтируются в радиальном направлении за счет разъемной зажимной втулки



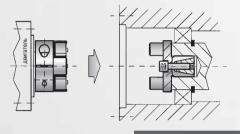
см. стр. 8

с коническим зажимным кольцом

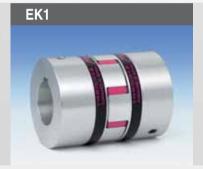
- очень хорошая точность вращения
- высокие усилия зажима
- втулка монтируется в осевом направлении


см. стр. 9

МОДЕЛИ

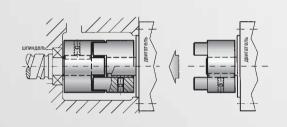

ХАРАКТЕРИСТИКИ

возможности применения



с конической разжимной оправкой

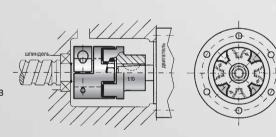
- втулка с разжимной оправкой монтируется в осевом направлении
- очень хорошая точность вращения
- высокие усилия зажима



см. стр. 10/11

со шпоночным соединением

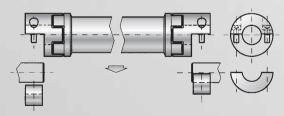
- экономичное исполнение
- возможность модификации с учетом потребностей заказчика



см. стр. 12

для конических концов вала

- для конических концов вала, например, у двигателей Fanuc
- удобство монтажа
- коническая втулка монтируется в осевом направлении



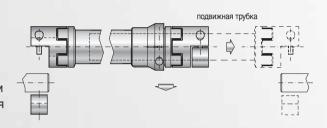
см. стр. 13

Карданный вал с разъемной зажимной втулкой

- монтируются в радиальном направлении за счет разъемной зажимной втулки
- стандартные отрезки до 4 м
- промежуточная опора не требуется
- возможна комплектация конической зажимной втулкой – опция

см. стр. 14/15

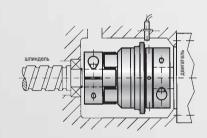
модели


ХАРАКТЕРИСТИКИ

возможности применения

Карданный вал с регулируемой длиной

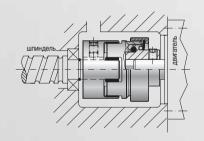
- плавная регулировка длины
- стандартные отрезки до 4 м
- монтаж в радиальном направлении
- промежуточная опора не требуется



см. стр. 16/17

Предохранительная муфта с зажимной втулкой

- точное ограничение крутящего момента
- беззазорное исполнение по принципу R+W
- удобство монтажа



см. стр. 18/19/20

Предохранительная муфта "Эконом-класс"

- экономичность
- компактность
- с запирающим устройством

см. стр. 21

для применения во взрывозащищенных зонах

- для всего ассортимента продукции
- для опасных зон 1/21 и 2/22 эластомерные муфты SERVOMAX Еех имеют допуск согласно ATEX 95а

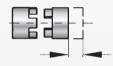
см. стр. 23

ЭЛАСТОМЕРНЫЕ МУФТЫ SERVOMAX®

Области применения:

- Двигатели с сервоприводами
- Станки
- Упаковочное оборудование
- Оборудование автоматизации
- Печатные машины
- Промышленные роботы
- Системы управления и позиционирования
- Общее машиностроение
- Подсоединение механизмов с винтовыми домкратами, линейных направляющих, импульсных датчиков

Характеристики:


- с амортизацией вибраций
- с электроизоляцией (стандарт)
- беззазорные
- разъемные
- с компенсацией смещений в боковом, угловом и осевом направлении

боковое смещение

угловое смещение

Беззазорность муфты обеспечивается предварительным сжимающим

напряжением эластомерного венца. Муфта Servomax может выравни-

вать боковое, угловое и осевое смещение.

осевое смещение

Принцип действия

Компенсатором эластомерной муфты является эластомерный венец. Он обеспечивает передачу крутящего момента без зазора и гасит вибрации. Эластомерный венец в значительной мере определяет свойства всей муфты или всей трансмиссии.

Вариант исполнения **A** Твердость по Шору 98 Sh A

Вариант исполнения В Твердость по Шору 64 Sh D

Вариант исполнения **С** Твердость по Шору 80 Sh A

Вариант исполнения **D*** Твердость по Шору 92 Sh A

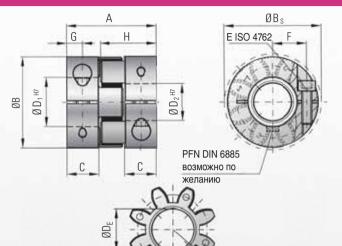
Описание

Описание эластомерных венцов	Вариант исполнения	Твердость по Шору	Цвет материала	Относительная амортизация (ψ)	Диапазон температур	Характеристики
А	98 Sh A	красный	TPU	0,4 - 0,5	от - 30°C до +100°C	хорошая амортизация
В	64 Sh D	зеленый	TPU	0,3 - 0,45	от - 30°C до +120°C	высокая жесткость на кручение
С	80 Sh A	желтый	TPU	0,3 - 0,4	от - 30°C до +100°C	очень хорошая амортизация
D*	92 Sh A	черный	TPU	0,3 - 0,45	от -10°C до +70°C	токопроводящие

^{*} Электропроводность пластика предотвращает образование статического заряда на эластомерном венце. Это позволяет исключить искрообразование во время эксплуатации. (Взрывоопасные зоны [Ex]) Технические характеристики предоставляются по запросу.

Значения относительной амортизации были получены при 10 Гц и +20 °C.

Mananini	ΓV														Сер	ИЯ												
Модельный ряд	EN																				300						800	
Исполнение эластомерно- го венца		Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	А	В	С
Статическая жесткость на кручение (Нм/рад)	Ст	50	115	17	150	350	53	260	600	90	1140	2500	520	3290	9750	1400	4970	10600	1130	12400	18000	1280	15100	27000	4120	41300	66080	10320
Динамическая жесткость на кручение (Нм/рад)	C_{Tdyn}	100	230	35	300	700	106	541	1650	224	2540	4440	876	7940	11900	1350	13400	29300	3590	23700	40400	6090	55400	81200	11600	82600	180150	28600
продольная 📴 🔠 (мм)	макс.	0.08	0.06	0.1	0.08	0.06	0.1	0.1	0.08	0.12	0.1	0.08	0.15	0.12	0.1	0.15	0.15	0.12	0.2	0.18	0.14	0.25	0.2	0.18	0.25	0.25	0.2	0.3
угловая 📑 🔝 (град)	значе	1	8.0	1.2	1	0.8	1.2	1	0.8	1.2	1	8.0	1.2	1	8.0	1.2	1	8.0	1.2	1	0.8	1.2	1	0.8	1.2	1	0.8	1.2
осевая (мм)	RNH		±1			±1			±1			±2			±2			±2			±2			±2			±2	


Статическая жесткость на кручение при 50% Ткм

Динамическая жесткость на кручение при T_{KN}

МОДЕЛЬ **EKL**

БЕЗЗАЗОРНЫЕ ЭЛАСТОМЕРНЫЕ МУФТЫ

Эластомерный венецна выбор

Исполнение A / B / C

Характеристики:

- укороченная конструкция
- удобство монтажа
- с амортизацией вибраций
- с электроизоляцией
- беззазорные
- разъемные

Материал:

Втулки муфты: до серии 450 - высокопрочный алюминий, начиная с серии 800 - сталь Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный на прецизионном оборудовании

Компактный вариант

Конструкция:

Две втулки муфты, изготовленные с высокой точностью вращения, снабженные вогнутыми

поводковыми кулачками

*Число оборотов:

Если свыше 4 000 (1/мин) - требуется точная балансировка муфт (следует указать)

Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 мм

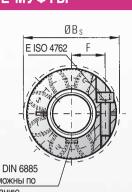
Модель EKL			2			5			10			20			ер ı 60			150			300			450			800	
Исполнение (эластомерный венец)		Α	В	С	Α	В	С	Α	В	С	Α	B	С	Α	В		Α	В	С	Α	В	С	Α	43U B	С	Α	В	С
Номинальный крутящий момент (Нм)	T _{KN}	2	2,4	0,5	9	12	2	12,5	16	4	17	21	6	60	75		160	200	42	325	405	84	530	660	95	950	1100	-
Макс. крутящий момент** (Нм)	_	4	4,8	1	18	24	4	25	32	6	34	42	-	120	150		320	400	85	650	810	170		1350	190			
17 . ()	I _{Kmax}	4	20	-	10	26	+	25	32	U	34	50		120	58		320	62	00	030	86	170	1000	94	130	1900	123	400
Монтажная длина (мм)	A																											
Наружный диаметр (мм)	В		16			25			32			42			56			66.5			82			102			136,5	
Наружный диаметр головки болта (мм)	B _S		17			25			32			44.	5		57			68			85			105			139	
Длина посадки (мм)	С		6			8			10.3			17			20			21			31			34			46	
Возможный внутренний диаметр от ∅ до ∅ Н7 (мм)	D _{1/2}		3 - 8		4	1 - 12,7	,		4 - 16			8 - 2	.5		12 - 3	32		19 - 36		:	20 - 45	;	:	28 - 60)	(35 - 80)
Макс. внутренний диаметр эластомерный венец) (мм)	D _E		6,2			10,2			14,2			19,2	2		26,2	2		29,2			36,2			46,2			60,5	
Крепежный болт (ISO 4762/12.9)			M2			М3			M4			M5			M6			M8			M10			M12			M16	
Момент затяжки крепежного болта (Нм)	Е		0,6			2			4			8			15			35			70			120			290	
Межцентровое расстояние (мм)	F		5,5			8			10,5			15,	5		21			24			29			38			50,5	
Расстояние (мм)	G		3			4			5			8.5	i		10			11			15			17.5			23	
Длина втулки (мм)	Н		12			16.7			20.7			31			36			39			52			57			74	
Момент инерции для каждой втулки (10^{-3} кгм^2)	J ₁ /J ₂		0,0003			0,002			0,003			0,0	1		0,04	1		0,08			0,3			0,66			8	
Вес муфты (кг)			0,008			0,02			0,05			0,12	2		0,3			0,5			0,9			1,5			8,5	
Число оборотов* (1/мин)			28000			22000			20000)		1900	00		1400	00		11500			9500			8000			4000	

Информацию о статической и динамической жесткости на кручение, а также о макс. возможном смещении вала см. стр. 5

Серия	Ø3	Ø 4	Ø 5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
2	0,2	0,8	1,5	2,5														
5		1,5	2	8														
10			4	12	32													
20				20	35	45	60											
60					50	80	100	110	120									
150						120	160	180	200	220								
300						200	230	300	350	380	420							
450								420	480	510	600	660	750	850				
800										700	750	800	835	865	900	925	950	1000

Возможно достижение б'ольших крутящих моментов за счет дополнительной призматической шпонки!

^{**} Макс. передаваемый крутящий момент зажимной втулки в зависимости от диаметра отверстия. Возможно достижение б'ольших крутящих моментов за счет дополнительной призматической шпонки!



98

МОДЕЛЬ ЕК2

БЕЗЗАЗОРНЫЕ ЭЛАСТОМЕРНЫЕ МУФТЫ

PFN DIN 6885 возможны по желанию Исполнение эластомерного венца на выбор А / В / С Характеристики:

- удобство монтажа
- хорошая точность вращения
- с амортизацией вибраций
- с электроизоляцией
- беззазорные
- разъемные

Материал:

Втулки муфты: до серии 450 - высокопрочный алюминий, начиная с серии 800 - сталь Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный на прецизионном оборудовании

с зажимной втулкой

Конструкция:

Две втулки муфты, изготовленные с высокой точностью вращения, снабженные вогнутыми поводковыми кулачками

*Число оборотов:

Если свыше 10 000 (1/мин) – требуется точная балансировка муфт (следует указать)

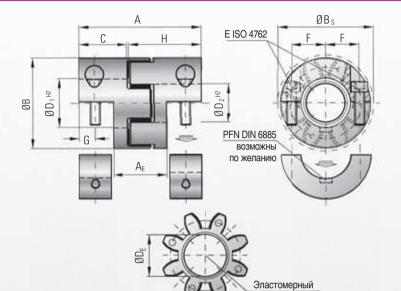
Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 мм

Ma FI/ 0										Ce	рия								
Модель ЕК 2			20			60			150			300			450			800	
Исполнение (эластомерный венец)		Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Номинальный крутящий момент (Нм)	T _{KN}	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Макс. крутящий момент** (Нм)	T _{Kmax}	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Монтажная длина (мм)	А		66			78			90			114			126			162	
Наружный диаметр (мм)	В		42			56			66,5			82			102			136,5	
Наружный диаметр головки болта (мм)	B _S		44.5			57			68			85			105			139	
Длина посадки (мм)	С		25			30			35			45			50			65	
Возможный внутренний диаметр от \varnothing до \varnothing H7 (мм)	D _{1/2}		8 - 25			12 - 32			19 - 36			20 - 45			28 - 60			35 - 80	
Макс. внутренний диаметр (эластомерный венец) (мм)	D _E		19,2			26,2			29,2			36,2			46,2			60,5	
Крепежный болт (ISO 4762/12.9)			M5			M6			M8			M10			M12			M16	
Момент затяжки крепежного болта (Нм)	Е		8			15			35			70			120			290	
Межцентровое расстояние (мм)	F		15,5			21			24			29			38			50,5	
Расстояние (мм)	G		8,5			10			12			15			17,5			23	
Длина втулки (мм)	Н		39			46			52,5			66			73			93,5	
Момент инерции для каждой втулки (10 ⁻³ кгм²)	J ₁ /J ₂		0,016			0,05			0,13			0,4			0,9			9,5	
Вес муфты (кг)			0,15			0,35			0,6			1,1			1,7			10	
Число оборотов* (1/мин)			19000			14000			11500			9500			8000			4000	

Информацию о статической и динамической жесткости на кручение, а также о макс. возможном смещении вала см. стр. 5

^{**} Макс. передаваемый крутящий момент зажимной втулки в зависимости от диаметра отверстия

Серия	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
20	20	35	45	60											
60		50	80	100	110	120									
150			120	160	180	200	220								
300			200	230	300	350	380	420							
450					420	480	510	600	660	750	850				
800							700	750	800	835	865	900	925	950	1000


Возможно достижение б'ольших крутящих моментов за счет дополнительной призматической шпонки!

МОДЕЛЬ ЕКН

БЕЗЗАЗОРНЫЕ ЭЛАСТОМЕРНЫЕ МУФТЫ

венец на выбор Исполнение A/ B/ C

Характеристики:

- монтаж в радиальном направлении
- хорошая точность вращения
- с амортизацией вибраций
- с электроизоляцией
- беззазорные
- разъемные

Материал:

Втулки муфты: до серии 450 – высокопрочный алюминий, начиная с серии 800 – сталь Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный на прецизионном оборудовании

Конструкция:

Обе половины зажимной втулки снимаются в одном направлении. С разъемными зажимными втулками и 2 боковыми болтами по ISO 4762 с каждой стороны втулки. Обусловленная конструкцией неуравновешенность зажимных втулок компенсируется балансировочными отверстиями внутри втулки

*Число оборотов:

Если свыше 10 000 (1/мин) – требуется точная балансировка муфт (следует указать)

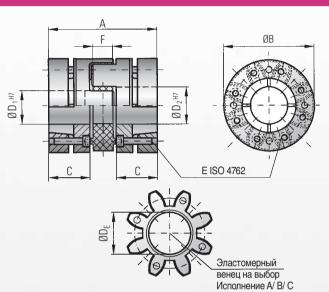
Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 мм

Marari EVII											Ce	RNC								
Модель ЕКН				20			60			150			300			450			800	
Исполнение (эластомерный венец)			Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Номинальный крутящий момент	(Нм)	T _{KN}	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Макс. крутящий момент**	(Нм)	T _{Kmax}	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Монтажная длина	(MM)	Α		66			78			90			114			126			162	
Длина вставки	(MM)	A _E		28			33			37			49			51			65	
Наружный диаметр	(MM)	В		42			56			66,5			82			102			136,5	
Наружный диаметр головки болта	(MM)	B _S		44,5			57			68			85			105			139	
Длина посадки	(мм)	С		25			30			35			45			50			65	
Возможный внутренний диаметр от Ø д	цо ∅ Н7 (мм)	D _{1/2}		8 - 25			12 - 32			19 - 36			20 - 45			28 - 60			35 - 80	
Макс. внутренний диаметр (эластомерный венец)	(MM)	D _E		19,2			26,2			29,2			36,2			46,2			60,5	
Крепежный болт (ISO 4762/12.9)		_		M5			M6			M8			M10			M12			M16	
Момент затяжки крепежного болта	(Нм)	E		8			15			35			70			120			290	
Межцентровое расстояние	(MM)	F		15,5			21			24			29			38			50,5	
Расстояние	(MM)	G		8.5			10			12			15			17,5			23	
Длина втулки	(MM)	Н		39			46			52,5			66			73			93,5	
Момент инерции для каждой втулки	(10 ⁻³ кгм ²)	J_1/J_2		0,02			0,06			0,1			0,4			1			9,5	
Вес муфты	(кг)			0,15			0,35			0,6			1,1			1,7			10	
Число оборотов*	(1/мин)			19000			14000			11500			9500			8000			4000	

Информацию о статической и динамической жесткости на кручение, а также о макс. возможном смещении вала см. стр. 5

^{**} Макс. передаваемый крутящий момент зажимной втулки в зависимости от диаметра отверстия

Серия	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
20	30	40	50	65											
60		65	120	150	180	200									
150			180	240	270	300	330								
300			300	340	450	520	570	630							
450					630	720	770	900	1120	1180	1350				
800							1050	1125	1200	1300	1400	1450	1500	1550	1600


Возможно достижение б'ольших крутящих моментов за счет дополнительной призматической шпонки!

Пример заказа EKH/ 60 / A / 19 / 24 / XX Модель Серия Исполнение эластомерного венца Ø отверстия D1 H7 Ø отверстия D2 H7 Особенности, например, точная балансировка

МОДЕЛЬ ЕК6

БЕЗЗАЗОРНЫЕ ЭЛАСТОМЕРНЫЕ МУФТЫ

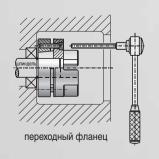
Properties:

- высокие усилия зажима
- очень высокая точность вращения
- удобство монтажа
- с амортизацией вибраций
- с электроизоляцией
- беззазорные
- разъемные
- монтаж в осевом направлении

Материал:

Втулки муфт и коническое зажимное кольцо: до серии 450 - высокопрочный алюминий, начиная с серии 800 - сталь. Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный на прецизионном оборудовании

Конструкция:


Две втулки муфты, изготовленные с высокой точностью вращения, снабженные вогнутыми поводковыми кулачками

Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 мм

Marari EV.C												(Серия										
Модель ЕК 6				10			20			60			150			300			450			800	
Исполнение (эластомерный венец)			Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Номинальный крутящий момент	(Нм)	T _{KN}	12,6	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Макс. крутящий момент	(Нм)	T _{Kmax}	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Монтажная длина	(MM)	Α		42 32			56			64			76			96			110			138	
Наружный диаметр	(MM)	В		32			43			56			66			82			102			136,5	
Длина посадки	(MM)	С		15			20			23			28			36			42			53	
Возможный внутренний диаметр от Ø д	о ∅ Н7 (мм)	D _{1/2}		6 - 16			8 - 24			12 - 32			19 - 35			20 - 45			28 - 55			32 - 80)
Макс. внутренний диаметр (эластомерный венец)	(мм)	D _E		14,2			19,2			26,2			29,2			36,2			46,2			60,5	
Крепежный болт (ISO 4762/12.9)		E		3x M3			6x M4			4x M5			8x M5			8x M6			8x M8			8x M10)
Момент затяжки крепежного болта	(Нм)	E		2			3			6			7			12			35			55	
Ширина эластомерного венца	(MM)	F		2 9,5			12			14			15			18			20			25	
Момент инерции для каждой втулки	(10 ⁻³ кгм ²)	J_1/J_2		9,5 0,004			0,015			0,05			0,1			0,3			0,85			9,2	
Вес муфты	(кг)			0,004			0,12			0,3			0,5			0,9			1,5			9,6	
Число оборотов	(1/мин)			20 000			19 000			14000			11 500			9500			8000			4000	

Информацию о статической и динамической жесткости на кручение, а также о макс. возможном смещении вала см. на стр. 5

Муфты модели ЕК 6 не требуют монтажных отверстий в переходном фланце. Особое размещение крепежных болтов обеспечивает возможность простого монтажа и демонтажа в осевом направлении.

МОДЕЛЬ ЕК7

БЕЗЗАЗОРНЫЕ ЭЛАСТОМЕРНЫЕ МУФТЫ

E₁ ISO 4762

PFN DIN 6885

возможны по желанию

Эластомерный

венец на выбор

Исполнение А / В / С

E₂ ISO 4762

с конической разжимной оправкой

Характеристики:

- укороченная конструкция
- удобство монтажа
- очень хорошая точность вращения
- монтаж со стороны цапфы в осевом направлении
- беззазорные
- с электроизоляцией

Материал:

Ø Bs

Зажимная втулка: до серии 450 -

высокопрочный алюминий, начиная с серии 800 – сталь. Внутренний конус + разжимная

оправка: сталь

Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный

на прецизионном оборудовании

Конструкция:

Две втулки муфты, изготовленные с высокой

точностью вращения

Страница 1: Зажимная втулка с боковым

болтом по ISO 4762.

Страница 2: Разжимная оправка с внутренним

конусом и болтом по ISO 4762

Рекомендуемый допуск для отверстия

- разжимная оправка: Н7

Три варианта исполнения эластомерного венца

*Число оборотов:

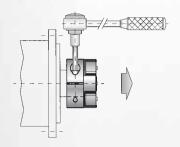
Если свыше 4 000 (1/мин) - требуется

балансировка муфт

											38	азор	при г	поса	дке: Со	едине	ение ва	л/	втул	тка 0	,01 -	0,05	MM		
Morory EV7														Ce	RNC										
Модель ЕК7				5			10			20			60		150	1	3	00			450)		800)
Исполнение (эластомерный венец)			Α	В	С	Α	В	С	Α	В	С	Α	В	С	A B	С	Α	В	С	Α	В	С	Α	В	С
Номинальный крутящий момент ((Нм)	T _{KN}	9	12	2	12,5	16	4	17	21	6	60	75	20	160 200	42	325	105	84	530	660	95	950	1100	240
Макс. крутящий момент*	(Нм)	T_{Kmax}	18	24	4	25	32	6	34	42	12	120	150	35	320 400	85	650	310	170	1060	1350	190	1900	2150	400
Монтажная длина	(мм)	Α		22			28			40			46		51			68			76			94	
Наружный диаметр	(мм)	В		25			32			42			56		66,5			82			102			135	
Наружный диаметр головки болта	(мм)	B _S		25			32			44,5			57		68			85			105			139	
Длина посадки	(мм)	C ₁		8			10,3			17			20		21			31			34			46	
Длина посадки	(мм)	C_2		12			20			25			27		32			45			55			60	
Возможный внутренний диаметр от \varnothing до \varnothing H7	(мм)	D ₁		4 - 12	.,7		5 - 16			8 - 25	;		12 - 32	!	19 - 3	6	20	- 45	5		28 - 6	0	:	35 - 8	0
Возможный внутренний диаметр от \varnothing до \varnothing H7	(мм)	D_2		10 - 16			13 - 25			14 - 30)		23 - 38		26 - 4	2	38	- 60)		42 - 7	0		42 - 8	0
Макс. внутренний диаметр (эластомерный венец)	(мм)	D _E		10,2			14,2			19,2			26,2		29,2		3	6,2			46,2			60,5	i
Крепежный болт (ISO 4762/12.9)		_		МЗ			M4			M5			M6		M8		N	/110			M12			M16	i
Момент затяжки	(Nm)	E ₁		2			4			8			15		35			70			120			290	
Крепежный болт (ISO 4762/12.9)		E_2		M4			M5			M6			M8		M10		N	/112			M16			M16	ĺ
Момент затяжки ((Нм)	⊏2		4			9			12			32		60			110			240			300	
Межцентровое расстояние	(мм)	F		8			10,5			15,5			21		24			29			38			50,5	i
Расстояние	(мм)	G		4			5			8.5			10		11			15			17.5			23	
Длина ((мм)	Н		7			7			10			11		16			20			27			27	
Момент инерции для каждой втулки $D_1\ (10^{-3}\ km)$	кгм ²)	J ₁		0,002			0,003			0,01			0,04		0,08			0,3			0,66			8	
Момент инерции для каждой втулки ${\rm D_2}$ (10 $^{\rm 3}$ к	кгм ²)	J_2		0,002			0,01			0,04			0,1		0,2			1			2,6			9	
Вес муфты	(кг)			0,04			0,05			0,12			0,3		0,5			0,9			1,5			7,6	
Число оборотов* (1/r	мин)			22000			20 000			19000			14000		11 50	0	9	500			8000)		4000)

Информацию о статической и динамической жесткости на кручение, а также о макс. возможном смещении вала см. на стр. 5

Макс. передаваемый крутящий момент зажимной втулки в зависимости от диаметра отверстия (таблица справа). (Зазор посадки в смазанном маслом соединении вал – втулка от 0,01 до 0,05)



ИНСТРУКЦИИ ПО МОНТАЖУ ДЛЯ ЕК7

Монтаж зажимной втулки:

Надеть зажимную втулку на конец вала и, убедившись в правильном осевом положении зажимного болта, затянуть его с указанным моментом затяжки E₁.

См. стр. 10/ графа Е₁

Демонтаж зажимной втулки:

Для демонтажа достаточно отвинтить крепежный болт E_1 .

Монтаж разжимной оправки:

Вдавить коническую разжимную оправку в полый вал на длину втулки. Затянуть крепежный болт E_2 , соблюдая указанный момент затяжки.

См. стр. 10/ графа Е2

Демонтаж разжимной оправки:

Для демонтажа ослабить на несколько оборотов крепежный болт $\mathsf{E}_2.$

Легким ударом по головке болта высвободить внутренний конус из конической разжимной оправки.

Теперь втулка не закреплена, и ее можно легко вынуть.

Преимущество:

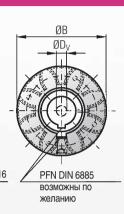
Для монтажа муфты EK7 в навесном фланце требуются монтажные отверстия.

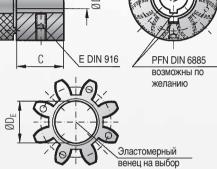
Оставить расстояние примерно 1 мм для уравнивания по оси

Внимание:

Эластомерный венец должен быть подвижным в осевом направлении, чтобы воспринимать осевые смещения валов.

Серия	Ø3	Ø 4	Ø 5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
5		1,5	2	8														
10			4	12	32													
20				20	35	45	60											
60					50	80	100	110	120									
150						120	160	180	200	220								
300						200	230	300	350	380	420							
450								420	480	510	600	660	750	850				
800										700	750	800	835	865	900	925	950	1000


Возможно достижение б'ольших крутящих моментов за счет дополнительной призматической шпонки!



МОДЕЛЬ ЕК1

БЕЗЗАЗОРНЫЕ ЭЛАСТОМЕРНЫЕ МУФТЫ

Исполнение A / B / C

со шпоночным соединением

Характеристики:

- экономичные
- хорошая точность вращения
- с амортизацией вибраций
- с электроизоляцией
- разъемные
- с небольшим зазором из-за шпоночного соединения

Материал:

Втулки муфты: до серии 450 – высокопрочный алюминий, начиная с серии 800 – сталь Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный на прецизионном оборудовании

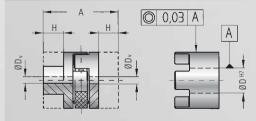
Конструкция:

Две втулки муфты, изготовленные с высокой точностью вращения, снабженные вогнутыми поводковыми кулачками. Посадка H7 + паз по DIN 6885 + зажимный болт по DIN 916 или – на выбор – предв. просверленный (DV)

*Число оборотов:

Если свыше 10 000 (1/мин) – требуется точная балансировка муфт (следует указать)

Зазор при посадке: Соединение


Соединение вал / втулка 0,01 - 0,05 мм

Модель ЕК 1															С	ери	Я												
модель ск т				2			5			10			20			60	ı		150			300			450			800	
Исполнение (эластомерный венец)			Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Номинальный крутящий момент	(Нм)	T _{KN}	2	2,4	0,5	9	12	2	12,5	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Макс. крутящий момент	(Нм)	T _{Kmax}	4	4,8	1	18	24	4	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Монтажная длина	(MM)	A		20			34			35			66			78			90			114			126			162	
Наружный диаметр	(MM)	В		15			25			32			42			56			66.5			82			102			136,5	
Длина посадки	(MM)	С		6.5			12			12			25			30			35			45			50			65	
Внутренний диаметр, предв. просверлен	. (мм)	D _V		3			4			6			7			9			14			18			22			29	
Возможный внутренний диаметр от Ø до Ø H7	(MM)	D _{1/2}		3 - 9			6 - 15			6 - 18	1		8 - 25	;		12 - 32	2		19 - 38	8		20 - 4	5		28 - 60)	3	2 - 80)
Макс. внутренний диаметр (эластомерный венец)	(MM)	D _E		6,2			10,2			14,2			19,2			26,2			29,2			36,2			46,2			60,5	
Зажимные болты (DIN 916)											CM	. табл	ицу (в	в заві	исимо	сти о	т диа	метра	отве	рстия	1)**								
Ширина эластомерного венца	(MM)	F		5			8			9.5			12			14			15			18			20			25	
Расстояние	(MM)	G		3			5			6			9			11			12			15			17			30	
Возможная величина уменьшения	(MM)	Н		3			6			6			19			22			26			32			37			43	
Момент инерции для каждой втулки (10 ⁻¹	³ кгм ²)	J ₁ /J ₂		0,0001			0,001			0,003			0,02			0,06			0,1			0,4			1,1			12	
Вес муфты	(KF)			0,008			0,03			0,08			0,15			0,35			0,6			1,1			1,7			11	-
Число оборотов* (1/мин)			28 000			22 000)	- :	20 000)		19 000)		14000)		11 500	1		9500			8000			4000	

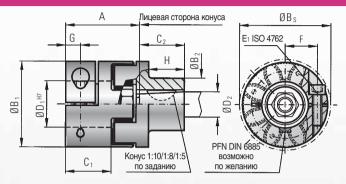
Информацию о статической и динамической жесткости на кручение, а также о макс. возможном смещении вала см. на стр. 5

**Зажимные	болты
D ₁ /D ₂	Е
- Ø 10	M3
Ø 11-12	M4
Ø 13-30	M5
Ø 31-58	M8
Ø 59-80	M10

■ Указания для предв. высверленных втулок муфт (D_v) / доработка заказчиком

Предварительно высверленные втулки муфт позволяют внедрять решения с учетом требований заказчика. Поставка предварительно высверленных втулок муфт без боковой резьбы.

Втулку муфты можно уменьшить на величину Н. Если требуется высокая точность, втулки муфт необходимо выравнивать с точностью до 0,0 мм.


Только так можно гарантировать плавный ход всего привода.

Пример заказа
EK1/60 / A / 19 / D _V / XX
Модель
Серия
Исполнение эластомерного венца
Ø отверстия D1 H7
Ø отверстия D2 предв. высверл. (D _v)
Особенности, например, анодированные

МОДЕЛЬ ЕК4

БЕЗЗАЗОРНЫЕ ЭЛАСТОМЕРНЫЕ МУФТЫ

Модель ЕК 4		Серия									
модель ск 4				20			60			150	
Исполнение (эластомерный венец)			Α	В	С	Α	В	С	Α	В	С
Номинальный крутящий момент	(Нм)	T _{KN}	17	21	6	60	75	20	160	200	42
Макс. крутящий момент*	(Нм)	T _{Kmax}	34	42	12	120	150	35	320	400	85
Монтажная длина до лицевой стороны конуса	(мм)	А		42			50			57	
Наружный диаметр зажимной втулки	(MM)	B ₁		42			56			66,5	
Наружный диаметр конической втулки	і (мм)	B ₂	регу	лируе	мый	регу	лирує	мый	регу	лируе	мый
Наружный диаметр головки болта	(мм)	Bs		44,5			57			68	
Длина посадки	(мм)	C ₁		25			30			35	
Длина внутреннего конуса	(мм)	C ₂	регу	лируе	мый	регу	лирує	мый	регу	лируе	мый
Возможный диаметр от \varnothing до \varnothing H7	(MM)	D ₁		8-25			12-32			19-36	
Возможный диаметр конуса от ∅ до ∅ H7	(MM)	D ₂	Коническая зажимная втулка по заданию заказчика**					ка			
Макс. внутренний диаметр (эластомерный венец)	(MM)	D _E		19,2			26,2			29,2	
Крепежный болт (ISO 4762/12.9)				M5			M6			M8	
Момент затяжки	(Нм)	E ₁		8			15			35	
Межцентровое расстояние	(MM)	F		15,5			21			24	
Расстояние	(MM)	G		8,5			10			12	
Длина	(MM)	Н	регу	лирує	мый	регу	лирує	мый	регу	лируе	мый

Информацию о статической и динамической жесткости на кручение, а также о макс.

- Макс. передаваемый крутящий момент зажимной втулки в зависимости от диаметра отверстия
- (Зазор посадки в смазанном маслом соединении вал втулка от 0,01 до 0,05) Внимание: Размеры С2 / H / и ⊘В2 зависят от используемой конической цапфы

Серия	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35
20	20	35	45	60			
60		50	80	100	110	120	
150			120	160	180	200	220

Возможно достижение б'ольших крутящих моментов за счет дополнительной призматической

Лицевая сторона конуса

Характеристики:

- для конических концов вала
- укороченная конструкция
- удобство монтажа
- хорошая точность вращения
- беззазорные
- с электроизоляцией

Материал:

Втулка муфты D1: высокопрочный алюминий Коническая втулка D2: сталь Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный на прецизионном

оборудовании

Конструкция:

Две втулки муфты, изготовленные с высокой

точностью вращения

D1: Зажимная втулка с боковым болтом по

ISO 4762.

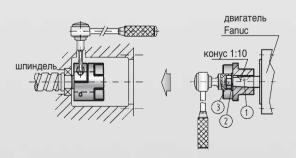
D2: Коническая втулка с конусом и пазом под сегментную шпонку по желанию заказчика

Число оборотов:

Если свыше 10 000 (1/мин) – требуется точная

балансировка муфт (следует указать)

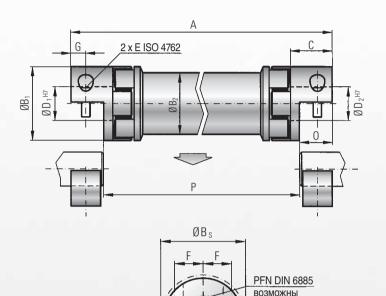
Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 мм


Пример заказа

Изготовитель оставляет за собой право на технические изменения.

Инструкции по монтажу

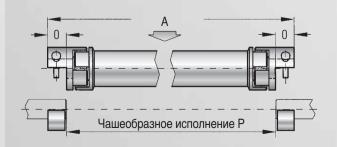
Монтаж зажимной втулки: Надеть зажимную втулку на конец вала и, убедившись в правильном осевом положении зажимного болта Е1, затянуть его с указанным моментом затяжки (графа Е1).


Монтаж конической втулки: Вставить сегментную шпонку (1) в предусмотренный паз на валу двигателя и надеть коническую втулку на вал. Проверить седло конуса на долю воспринимаемой нагрузки.

Теперь установить подкладную шайбу (2) и шестигранную гайку (3) и затянуть, соблюдая момент затяжки, указанный изготовителем двигателя.

МОДЕЛЬ **EZ2**

БЕЗЗАЗОРНЫЕ КАРДАННЫЕ ВАЛЫ



по желанию

Изготовитель оставляет за собой право на технические изменения.

Инструкции по монтажу

Монтажная длина А складывается из величины интервала Р + 2х0.

Характеристики:

- муфта монтируется в радиальном направлении за счет разъемной зажимной
- для сопряжения больших расстояний между валами – до 4 м
- промежуточная опора не требуется
- небольшой момент инерции масс
- с амортизацией вибраций
- разъемные
- беззазорные

Материал:

Втулки муфты: до серии 450 - высокопрочный алюминий, начиная с серии 800 - стал Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный на прецизионном оборудовании Промежуточная трубка: высокоточная трубка из алюминия Возможно исполнение трубки из стали и СFК (углепластик) - опция

Конструкция:

Две втулки муфты, изготовленные с высокой точностью вращения, снабженные вогнутыми

поводковыми кулачками

Эластомерный венец - на выбор вариант А или В Обе части муфты жестко соединяются с алюминиевой трубкой, оптимизированной для

вращения без биений

Число оборотов:

При любом обращении и размещении заказа просим указывать рабочее число оборотов для проверки критической по изгибу частоты вращения

Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 мм

Жесткость на кручение:

Предлагаются эластомерные венцы с разной твердостью по Шору для оптимизации всей

трансмиссии в целом

Программа расчета R+W

Специальное программное обеспечение для расчетов позволяет моделировать карданные валы, подходящие именно для Вашего случая применения.

Приведенные ниже значения получены в результате вычислений.

Значения могут меняться в зависимости от использования разных материалов трубки (AL, сталь, CFK) и эластомерных венцов.

Критическое по изгибу число оборотов nkb 1/мин. Макс. рабочее число оборотов 1/мин. Угол кручения EZ 2 град-мин-сек $C_{Tdyn}^{EZ} =$ Суммарная жесткость EZ 2 Нм/рад $\Delta \Delta Kr =$ Допустимое боковое смещение MM Общий вес m = ΚГ Момент инерции EZ 2 K_ΓM²

Ma-a-: F7.0			Серия														
Модель EZ 2			1	0	2	20	6	0	1!	50	30	00	4	50	80	00	
Исполнение (эластомерный венец)			Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	
Номинальный крутящий момент	Номинальный крутящий момент (Нм)		12,5	16	17	21	60	75	160	200	325	405	530	660	950	1100	
Макс. крутящий момент**	(Нм)	T _{Kmax}	25	32	34	42	120	150	320	400	650	810	1060	1350	1900	2150	
Монтажная длина карданных валов от – до	(мм)	А	95 - 4	4000	130 -	4000	175 -	4000	200 -	4000	245 -	4000	280 -	4000	320 -	4000	
Наружный диаметр втулки	(мм)	B ₁	3	2	4	12	5	6	66	6,5	8	32	10	02	13	6,5	
Наружный диаметр трубки	(MM)	B ₂	2	8	3	35	5	0	6	60	7	'6	g	10	12	20	
Наружный диаметр головки болта	(MM)	B _S	3	2	44	4,5	5	7	6	8	8	15	10	05	10	39	
Длина посадки	(MM)	С	2	20 25		4	0	47		55		65		79			
Возможный внутренний диаметр от Ø до Ø Н7 (мм)		D _{1/2}	5 -	16	8 -	25	14 -	14 - 32 19 - 36		19 - 45		24 - 60		35 - 80			
Крепежный болт (ISO 4762/12.9)		F	М	4	N	1 5	M	6	M8		M10		M12		M16		
Момент затяжки	(Нм)	E	4 8		8	1	5	3	35	7	0	12	20	290			
Межцентровое расстояние	(MM)	F	10,5		15,5		21		24		29		38		50,5		
Расстояние	(мм)	G	7,5		8	8,5		15		17,5		20		25		30	
Длина вставки	(MM)	0	16	,6	18	3,6	32		37		42		52		62		
Момент инерции для каждой части муфть	ы (10 ⁻³ кгм ²)	J_1/J_2	0,0	01	0,	02	0,15		0,	21	1,	02	2	,3	1	7	
Момент инерции трубы на каждый погонный метр	(10 ⁻³ KГМ ²)	J ₃	0,0	75	0,	183	0,0	66	1,18		2,48		10),6	3	8	
Жесткость на кручение обеих частей муфты	(Нм/рад)	C_{Tdyn}^{E}	270	825	1270	2220	3970	5 950	6700	14650	11 850	20200	27700	40600	41300	90 000	
Жесткость на кручение на каждый 1 м промежуточной трубы	(Нм/рад)	C_T^{ZWR}	321		15	530	66	6632		11 810		20230		65340		392800	
Средний размер шарнира	(MM)	N	2	6	3	33	49		57		67		78		94		
Длина муфты	(мм)	Н	3	4	4	16	6	3	7	'3	8	16	9	19	12	25	

^{**} Макс. передаваемый крутящий момент зажимной втулки см. в ЕКН (стр. 8)

Выбор параметров эластомерных карданных валов ЕZ 2

Α Общая длина AB

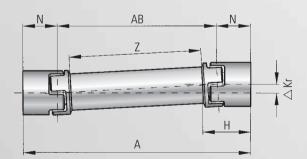
Длина AB = (A - 2xN)Длина промежуточной трубки

Z = (A - 2xH)

Динамич. жесткость на кручение обоих эластомерных венцов

Жесткость на кручение на каждый

метр промежуточной трубки


 $C_{\mathsf{Tdyn}}^{\mathsf{EZ}}$ Сумм. жесткость на кручение Нм/рад

Н Длина муфты Нм/рад

Ν Средний размер шарнира MM Макс. крутящий момент Нм

MM

Угол кручения градус

■ По общей жесткости на кручение

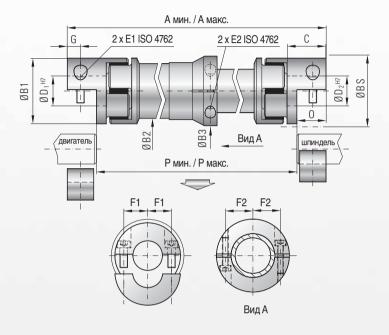
$$C_{\text{Tdyn}}^{\text{EZ}} = \frac{C_{\text{Tdyn}}^{\text{E}} x \left(C_{\text{T}}^{\text{ZWR}} / Z \right)}{C_{\text{Tdyn}}^{\text{E}} + \left(C_{\text{T}}^{\text{ZWR}} / Z \right)}$$
 (Нм/рад)

По углу кручения

Нм/рад

$$\phi = rac{180 \ x \ M_{\text{max}}}{\pi \ x \ C_{\text{Tdyn}}^{\text{EZ}}}$$
 (градус)

По макс. допустимому смещению



МОДЕЛЬ **EZV**

БЕЗЗАЗОРНЫЕ КАРДАННЫЕ ВАЛЫ

Изготовитель оставляет за собой право на технические изменения.

Инструкции по монтажу

Регулируемые по длине

Характеристики:

- плавно регулируемые по длине
- муфта монтируется в радиальном направлении за счет разъемных зажимных втулок
- промежуточная опора не требуется
- небольшой момент инерции масс
- сопряжение межосевых расстояний до 4 м
- с амортизацией вибраций
- разъемные
- беззазорные

Материал:

Втулки муфты: высокопрочный алюминий, Эластомерный венец: сверхпрочный на износ и термостойкий пластик, изготовленный на прецизионном оборудовании Промежуточные трубки: высокоточные трубки из алюминия

Конструкция:

Две втулки муфты, изготовленные с высокой точностью вращения, снабженные вогнутыми поводковыми кулачками. Исполнение эластомерного венца на выбор

Обе части муфты жестко соединяются посредством двух трубок, вращающихся без

биений.

Возможно изменение длины в жестко установленных пределах за счет ослабления зажимной втулки трубы.

Число оборотов:

При любом обращении и размещении заказа просим указывать рабочее число оборотов для проверки критической по

изгибу частоты вращения

Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 м

Жесткость на кручение:

Предлагаются эластомерные венцы с разной твердостью по Шору для оптимизации всей

трансмиссии в целом.

Программа расчета R+W

Специальное программное обеспечение для расчетов позволяет моделировать карданные валы, подходящие именно для Вашего случая применения.

Приведенные ниже значения получены в результате вычислений. Значения могут меняться за счет использования разных эластомерных венцов.

Критическое по изгибу число оборотов n_{kb} 1/мин. Макс. рабочее число оборотов 1/мин. Угол кручения EZ V град-мин-сек $C_{Tdyn}^{EZ} =$ Суммарная жесткость EZ V Нм/рад $\Delta \Delta Kr =$ Допустимое боковое смещение MM Общий вес m ΚГ Момент инерции EZ V кгм2

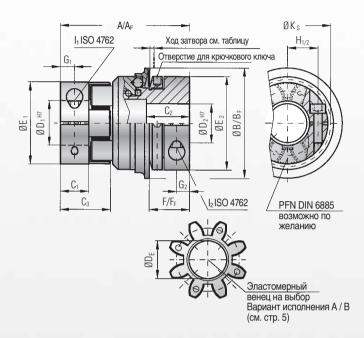
M F7\/							Ce	Вия						
Модель EZV		1	0	2	0	6	0	15	0	30	00	45	0	
Исполнение (эластомерный венец)		Α	В	Α	В	Α	В	Α	В	А	В	Α	В	
Номинальный крутящий момент (Нм)	T _{KN}	12.5	16	17	21	60	75	160	200	325	405	530	660	
Макс. крутящий момент** (Нм)	T _{Kmax}	25	32	34	42	120	150	320	400	650	810	1060	1200	
Миним. длина, втянутое сост., от – до (мм)	A _{min}	150 to	2055	200 to	2075	250 to	2095	300 to	2115	350 to	2130	400 to	2150	
Общая длина (выдвинутая) от – до (мм)	A _{max}	190 to	4000	250 to	4000	310 to	4000	370 to	4000	440 to	4000	500 to	4000	
Расчетный размер (мм)	X1+X2	11	0	15	0	19	90	23	0	27	70	30	0	
Наружный диаметр втулки (мм)	B ₁	3	2	4:	2	5	6	66	,5	8	2	10	2	
Наружный диаметр трубки (мм)	B ₂	2	8	3	5	5	0	60)	8	0	90	0	
Наружный диаметр средней втулки (мм)	B ₃	41	,5	4	7	6	7	77	7	10)2	11	5	
Наружный диаметр головки болта (мм)	B _S	3	2	44	,5	5	7	68	3	8	5	10	15	
Длина посадки (мм)	С	2	0	25		40		47		55		65		
Возможный внутренний диаметр от \varnothing до \varnothing H7 (мм)	D _{1/2}	5 to	16	8 to	25	14 to	32	19 to	35	19 to	o 45	24 to	60	
Крепежный болт (ISO 4762/12.9)	E ₁	M	4	М	5	M	6	M	8	M	10	M1	12	
Момент затяжки (Нм)	<u>-1</u>	4	1	8		1	5	35	5	70		120		
Крепежный болт (ISO 4762/12.9)	E ₂	M	4	М	4	M	5	М	6	M	8	M1	10	
Момент затяжки (Нм)	<u>-2</u>	4	1	4,	5	8	3	18	3	3	5	70	0	
Крепежный болт (ISO 4762/12.9) (мм)	F ₁	10	,5	15	,5	2	1	24	1	2	9	3	8	
Среднее расстояние (мм)	F ₂	1	5	18	3	26		3.	l	4	1	4	5	
Расстояние (мм)	G	7,	5	8,	5	1	5	17,	5	2	0	2	5	
Длина вставки (мм)	0	16	,6	18	,6	3	2	37	7	4	2	5	2	
Момент инерции для каждой части муфты (10 ⁻³ кгм ²)	J ₁ /J ₂	0,	01	0,0)2	0,	15	0,2	<u>!</u> 1	1,0	02	2,	3	
Момент инерции трубы на каждый погонный метр (10 ⁻³ кгм²)	J_3	0,0	75	0,1	83	0,0	66	1,1	8	2,4	48	10	,6	
Жесткость на кручение обеих частей муфты (Нм/рад)	C_{Tdyn}^{E}	270	825	1270	2220	3970	5950	6700	14650	11 850	20 200	27700	40 600	
Жесткость на кручение на каждый 1 м промежуточной трубы (Нм/рад)	C_T^{ZWR}	32	321		1 530		6632		11 810		20 230		65340	
Средний размер шарнира (мм)	N	2	26		33		49		57		67		78	
Длина муфты (мм)	Н	3	4	41	6	6	3	73	3	8	6	9:	9	

^{**} Макс. передаваемый крутящий момент зажимной втулки см. в ЕКН (стр. 8)

Функциональное описание

Общая длина, выдвинутая = (мин. длина, втянут. х 2) – расчетный размер (Х1 + Х2)

общая длина, выдвинутая + расчетный размер (X1 + X2) иним. длина во втянутом состоянии


Общая длина в выдвинутом состоянии и миним. длина во втянутом состоянии конструктивно связаны друг с другом при расчете параметров карданных валов. В зависимости от требований, две формулы слева в сочетании с чертежом позволяют вычислить общую длину в выдвинутом состоянии или минимальную длину во втянутом состоянии.

Информацию по определению параметров карданных валов EZV относительно жесткости на кручение или осевого, углового и бокового смещения см. на стр. 15.

МОДЕЛЬ **ES2**

БЕЗЗАЗОРНЫЕ ПРЕДОХРАНИТЕЛЬНЫЕ МУФТЫ

W = Повторная фиксация с согласованием углов

- после устранения перегрузки муфта снова входит в зацепление при достижении угла точно 60° и готова к работе
- гарантия синхронности, благодаря испытанному принципу
- коммутационный сигнал при перегрузке

D = муфта с запирающим действием

- муфта автоматически фиксируется в следующей шаровой выемке и снова готова к работе
- стандартная фиксация под углом 60°
- фиксация под углом 0, 45, 90, 120 в качестве опции
- коммутационный сигнал при перегрузке

F = фиксация с разъединяющим действием

- при перегрузке длительное разъединение стороны привода и отбора мощности
- призматическая шпонка полностью меняет направление
- высвобождение маховой массы
- коммутационный сигнал при перегрузке
- зацепление муфты вручную, повторная фиксация через каждые 60°

Ход затвора см. таблицу

Характеристики:

- точное ограничение крутящего момента
- компактная, простая конструкция
- беззазорное исполнение по принципу R+W
- быстрое отключение за доли секунды
- большой ход затвора при перегрузке
- с электроизоляцией
- разъемные

Материал:

Защитный элемент: закаленная сталь, рассчитанная на высокие нагрузки Поверхность с антикоррозийной защитой

(оксидированная)

Втулки муфты D1: до серии 450

высокопрочный алюминий, начиная с серии

800 - сталь

Втулки муфты D2: до серии 60 -

высокопрочный алюминий, начиная с серии

150 - сталь

Эластомерный венец: сверхпрочный на износ пластик, изготовленный на прецизионном

оборудовании

Конструкция:

Две втулки муфты, изготовленные с высокой точностью вращения, снабженные вогнутыми

поводковыми кулачками.

С одной стороны встроена предохранительная

муфта

Предохранительная муфта поставляется на выбор в исполнении с синхронным, запирающим

выоор в исполнении с синхронны или разъединяющим действием.

Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 мм

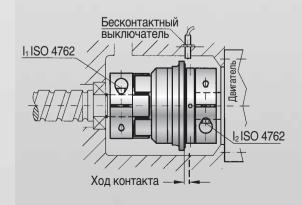
См. таблицу на странице справа

Ordering example

Изготовитель оставляет за собой право на технические изменения.

Выбор параметров предохранительных муфт

Предохранительные муфты, как правило, рассчитываются с учетом требуемого момента разобщения. Он должен быть выше максимального возникающего при эксплуатации оборудования крутящего момента.


Дополнительную информацию для расчетов см. на стр. 22.

Morori EC 2						Серия				
Модель ES 2			10	20	60	150	300	450	800	
Диапазон регулировки от – до Диапазон регулировки от – до	(Нм)	T _{KN}	2 - 6 или 4 - 12	10 - 25 или 20 - 40	10 - 30 или 25 - 80	20-70 45-150 80-180	100 - 200 150 - 240 200 - 320	80 - 200 200 - 350 300 - 500	400 - 650 500 - 800 600 - 900	
Исполнение с разъединяющим действием действием	(Нм)	T _{KN} F	2-5 или 5-10	8 - 20 или 16 - 30	20 - 40 или 30 - 60	20-60 40-80 80-150	120 - 180 или 180 - 300	60 - 150 100 - 300 250 - 500	200 - 400 или 450 - 800	
Монтажная длина	(мм)	А	60	86	96	106	140	164	179	
Монтажная длина – исполнение с разъединяющим действием	(мм)	A _F	60	86	96	108	143	168	190	
Переключающая втулка ∅	(мм)	В	45	65	73	92	120	135	152	
Ø переключающей втулки – исполнение с разъединяющим действием	(мм)	B _F	51,5	70	83	98	132	155	177	
Длина посадки	(мм)	C ₁	10,3	17	20	21	31	34	46	
Длина посадки	(мм)	C ₂	16	27	31	35	42	51	45	
Длина втулки	(мм)	C ₃	20,7	31	36	39	52	57	74	
Возможный внутренний диаметр от Ø до Ø H7	(мм)	D ₁	5 - 16	8 - 25	12 - 32	19 - 36	20 - 45	28 - 60	35 - 80	
Возможный внутренний диаметр от Ø до Ø H7	(мм)	D ₂	6 - 20	12 - 30	15 - 32	19 - 42	30 - 60	35 - 60	40 - 75	
Внутренний диаметр (эластомерный венец)	(мм)	D _E	14,2	19,2	27,2	30,2	38,2	46,2	60,5	
Диаметр втулки	(мм)	E ₁	32	42	56	66,5	82	102	136,5	
Диаметр втулки	(мм)	E ₂	40	55	66	81	110	123	132	
Расстояние	(мм)	F	17	24	30	31	35	45	50	
Расстояние – исполнение с разъединяющим действием	(мм)	F _F	16	22	29	30	35	43	54	
Расстояние	(мм)	G ₁	5	8,5	10	11	15	17,5	23	
Расстояние	(мм)	G ₂	5	7,5	9,5	11	13	17	18	
Межцентровое расстояние со стороны эластомера	(мм)	H ₁	10,5	15	21	24	29	38	50,5	
Болты (ISO 4762/12.9)			M4	M5	M6	M8	M10	M12	M16	
Момент затяжки	(Нм)	I ₁	4	8	15	35	70	120	290	
Межцентровое расстояние со стороны	(MM)	H ₂	15	19	23	27	39	41	48	
Болты (ISO 4762/12.9)			M4	M6	M8	M10	M12	M16	2x M16	
Момент затяжки	(Нм)		4,5	15	40	70	130	200	250	
Наружный диаметр головки болта	(мм)	K _S	32	44,5	57	68	85	105	139	
Вес, примерно	(кг)		0,3	0,6	1,0	2,4	5,8	9,3	14,3	
Момент инерции (10-3	кгм ²)	J_{ges}	0,06 0,25		0,7	2,3	11	22	33,5	
Ход контактов	(MM)	900	1,2			1,9	2,2	2,2	2,2	
Исполнение эластомерного венца			A B	A B	A B	A B	A B	A B	A B	

Информацию о статической и динамической жесткости на кручение, а также о макс. возможном смещении вала см. на стр. 5

Инструкции по монтажу

Монтаж: Надеть сторону предохранительной муфты и эластомерной муфты на концы вала и, убедившись в правильном осевом положении зажимных болтов I1 и I2, затянуть их с указанным в таблице (стр. 12) моментом затяжки.

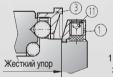
Внимание! Втулки имеют разные болты и моменты затяжки. Теперь можно собирать предохранительную муфту.

Демонтаж: Для демонтажа предохранительной муфты достаточно ослабить крепежные болты 11 и 12.

Концевой выключатель: Осевая траектория переключающей втулки приводит в действие механический концевой переключатель или бесконтактный выключатель.

Внимание! После монтажа необходимо проверить выключающую функцию в сочетании с бесконтактным выключателем или механическим концевым выключателем.

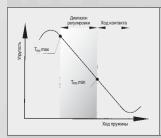
ФУНКЦИОНАЛЬНЫЕ СИСТЕМЫ ES2


Предохранительные муфты R+W действуют как подпружиненные муфты с кинематическим замыканием. Они защищают от перегрузок расположенные после них детали.

- Передача крутящего момента происходит без зазора через закаленные шарики (4), расположенные по периметру в конических цекованных площадках (5).
- Шарики вдавливаются в эти цекованные площадки тарельчатыми пружинами (2) посредством переключающей муфты (3).
- Разобщительный момент плавно регулируется посредством установочной гайки (1).
- При перегрузке переключающая муфта () перемещается назад вследствие продавливания тарельчатых пружин (2). Происходит безмоментное разъединение стороны привода и отбора мощности.
- В результате движения по оси переключающей муфты () срабатывает мех. концевой выключатель или бесконтактный выключатель (6), и привод отключается.

Регулировка разобщительного момента

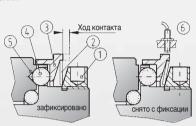
У муфт ES 2 отметкой (13) является паз в зажимной втулке.


- 1 становочная гайка
- 11 Стопорный болт
- 3 Стальная переключающая муфта
- 12 Диапазон регулировки
- 1 Отметки

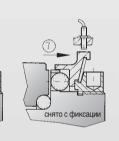
Предохранительные муфты R+W регулируются и маркируются на заводе с учетом требуемого разобщающего момента. На установочной гайке (1) указан диапазон регулировки: мин. - макс. Разобщающий момент плавно регулируется путем разного предварительного напряжения тарельчатых пружин в пределах диапазона регулировки

Выход за пределы диапазона регулировки во время регулировки не

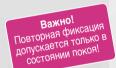
Ослабив предохранительный винт (11), с помощью подходящего инструмента, например, крючкового ключа для гаек по DIN 1816, можно изменить разобщающий момент.


Затем снова плотно затянуть х стопорных болтов (11).

Предохранительные муфты R+W снабжены тарельчатыми пружинами с особой характеристикой пружины. Рабочий диапазон разобщающего момента мин. - макс. находится на нисходящей части характеристики тарельчатой пружины, и выход за его пределы в сторону увеличения или уменьшения не допускается.


Согласование углов / Запирающее действие

У этих вариантов исполнения предохранительные муфты автоматически фиксируются после устранения перегрузки и снова готовы к работе.



Разъединяющее действие

При исполнении с разъединяющим действием пружина полностью меняет направление и при этом отводит переключающую муфту от шариков (7) Теперь муфта проходит свободно, не связывая сторону привода и отбора мощности.

Повторная фиксация происходит не автоматически, а вручную (см. рис. 3а и 3b).

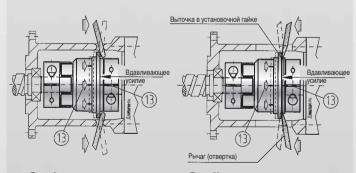
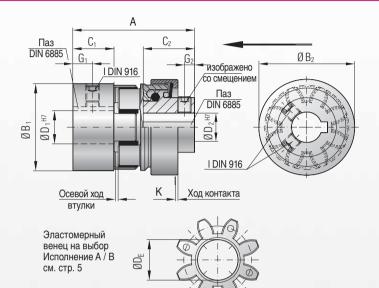


Рис. За

Puc. 3h

Повторная фиксация предохранительной муфты R+W возможна в 6 точках в пределах одного оборота при небольшом вдавливающем


Отметки зафиксированного положения (13) на предохранительной муфте R+W должны находиться друг над другом.

Начиная с серии 150, фиксация может происходить с помощью 2 рычагов, опорой для которых служит выточка в установочной гайке. В качестве рычага можно использовать также 2 отвертки (рис. b).

МОДЕЛЬ ESL

БЕЗЗАЗОРНЫЕ ПРЕДОХРАНИТЕЛЬНЫЕ МУФТЫ "Эконом-класс"

- Характеристики: точное ограничение крутящего момента
 - компактная, простая конструкция
 - небольшой уровень износа
 - с запирающим действием
- экономичность Материал: Защитный элемен

Конструкция:

Число оборотов:

Защитный элемент: сталь, рассчитанная на высокие нагрузки, шарики фиксации из закаленной стали Втулки муфты: высокопрочный алюминий, Эластомерный венец: сверхпрочный на износ пластик, изготовленный на прецизионном оборудовании Две втулки муфты, изготовленные с высокой точностью вращения, снабженные вогнутыми поводковыми кулачками. С одной стороны встроен предохранительный элемент. Муфты всех размеров используют принцип

стороны встроен предохранительный элемен Муфты всех размеров используют принцип фиксации с запирающим действием Пренебрежимо малый износ при выходе из

фиксации с частотой вращения до 200 об/мин Более высокое число оборотов: Опрос через концевой выключатель Требуется консультация

изготовителя.

Зазор при посадке: Соединение вал / втулка 0,01 - 0,05 мм

Marari ECI			Серия												
Модель ESL			5		1	10		20		60		50			
Исполнение эластомерного венца	Исполнение эластомерного венца		Α	В	Α	В	Α	В	Α	В	Α	В			
Номинальный крутящий момент	(Нм)	T_{kn}	9	9 12		16	17	21	60	75	160	200			
Диапазон регулировки*	(Нм)	Nm	1	-5	1-1	12	3-	19	5-	60	20-	150			
Общая длина	(MM)	А	3	4	4	5	6	64	8	0	9	0			
Диаметр втулки	(мм)	B ₁	2	5	3	2	4	12	5	6	66	6.5			
Диаметр втулки	(MM)	B ₂	2	9	3	2	4	46		9	75				
Длина посадки	(MM)	C ₁	12	12,5		12		25		30		5			
Длина посадки	(мм)	C_2	11	11,5		20		22		31		5			
Возможный внутренний диаметр от Ø до Ø H7	(MM)	D ₁	6-	15	6-18		8-25		12-32		19-38				
Возможный внутренний диаметр от Ø до Ø H7	(MM)	D_2	6-	10	6-12		8-19		12-24		19-	-32			
Отверстие в эластомерном венце	(мм)	D _E	10),5	14	-,2	19	19,2		5,2	29),2			
Расстояние	(MM)	G		5	6	6		9		1	1	2			
Расстояние	(мм)	G_2	2	,5	3,	5		4		4	4	4			
Болты DIN 916		1	В зависимости от диаметра отверстия см. стр. 12 (зажимные болты)												
Вес, примерно	(Kr)		0,	0,05		15	0	0,2		0,5		1			
Момент инерции для каждой втулки	(10-3 кгм²)	J_1/J_2	0,	01	0,02		0,08		0,15		0,5				
Ход контактов	(мм)	K	0	,6	1		0,6		1,2		1	,5			

^{*} Разобщающий момент жестко регулируется на заводе.

Информацию о статической и динамической жесткости на кручение, а также о макс. возможном смещении вала см. на стр. 5

Пример монтажа

ОПРЕДЕЛЕНИЯ И КОЭФФИЦИЕНТЫ

Температурный коэффициент S _υ	Α	В	С
Температура (υ)	Sh 98 A	Sh 64 D	Sh 80 A
> от - 0° до - 10°	1,5	1,7	1,4
> от -10° до + 0°	1,0	1,0	1,0
> от + 0° до +40°	1,2	1,1	1,3
> от +40° до +60°	1,4	1,3	1,5
> от +60° до +80°	1,7	1,5	1,8
> от +80° до +100°	2,0	1,8	2,1
> от +100° до +120°	-	2,4	_

Пусковой коэффициент \$7

Z _h	до 120	120 - 240	свыше 240
S _z	1,0	1,3	по запросу

Коэффициент динамики или нагрузки SA

Равномерное, легкое воздействие	S _A = 1,0
Неравномерное воздействие без сильных толчков, редкие смены направления вращения	S _A = 1,8
Высокая динамика, частые смены направления вращения	S _A = 2,5

T_{KN}	=	номинальный крутящий момент муфты (Нм)
T.,	_	максимальный крутанний момент муфты (Нм)

= возникающий пиковый крутящий момент на муфте (Нм) = пиковый крутящий момент со стороны привода (Нм) T_{AN} = номинальный крутящий момент стороны привода (Нм)

T_{LN} = номинальный крутящий момент стороны отбора мощности (Нм)

 \mathbf{P}_{LN} = выходная мощность (кВт) n = число оборотов 1/мин.

 J_A = момент инерции со стороны привода (кгм²) (ротор двигателя)

= момент инерции со стороны отбора мощности (кгм²) (шпиндель + салазки + изделие)

= момент инерции половины муфты со стороны привода (кгм²)

= момент инерции половины муфты со стороны отбора мощности (кгм²)

= отношение моментов инерции со стороны привода и со стороны отбора мощности

υ = температура у муфты (учитывать теплоту излучения)

S_v = температурный коэффициент SA = динамический коэффициент

= пусковой коэффициент (коэффициент учета количества S_{Z} пусков в час)

 \mathbf{Z}_{h} = частотность пусков (1/ч)

Выбор параметров эластомерной муфты

1. Расчет параметров муфты при работе без ударных или знакопеременных нагрузок

Номинальный крутящий момент муфты (T_{KN}) должен быть больше номинального крутящего момента со стороны отбора мощности (T_{LN}), с учетом температуры, возникающей у муфты (температурный коэффициент \mathbf{S}_v). Если \mathbf{T}_{LN} не известен, то вместо него в формулу можно подставить \mathbf{T}_{AN} .

Условие:

$$T_{KN} > T_{LN} \times S_v$$

Вспомогательный

расчет:

$$T_{LN} = \frac{9550 \times P_{LN}}{n}$$

Пример расчетов: (Импульсные проявления крутящего момента не ожидаются)

Привод: Двигатель постоянного тока: $T_{AN} = 119 \text{ Nm}$

Условия для муфты:

Отбор мощности: Центробежный насос

 $v = 70^{\circ} C$ **S**₁, = 1,7 (для 70°/вариант исполнения A)

 $T_{LN} = 85 \text{ Nm}$

 $T_{KN} > T_{LN} \times S_v$ Условие:

 $T_{KN} > 85 \text{ Nm x } 1,7$

 $T_{KN} > 144,5 \text{ Nm}$

→ Результат: Следует выбрать муфту ЕК 2/150/А (Т_{КN} = 160 Нм).

2. Расчет параметров муфты при воздействии ударных нагрузок

Основное условие – см. выше. Дополнительно нельзя допускать превышения максимального допустимого крутящего момента муфты (Ткмах) возникающими пиковыми крутящими моментами (Т_S) вследствие импульсов, возникающих на стороне отбора мощности (или на стороне привода).

Условие:

$$T_{KN} > T_{LN} \times S_v$$

Вспомогательный

расчет:

$$T_{LN} = \frac{9550 \times P_{LN}}{n}$$

Условие:

$$T_{Kmax} > T_{S} \times S_{Z} \times S_{\upsilon}$$

Вспомогательный

расчет:

$$T_{S} = \frac{T_{AS} \times S_{A}}{m+1}$$

$$\mathbf{m} = \frac{\mathbf{J}_{A} + \mathbf{J}_{1}}{\mathbf{J}_{L} + \mathbf{J}_{2}}$$

МОДЕЛЬ АТЕХ

АТ атмосфера ЕХ взрыва

ДЛЯ ПРИМЕНЕНИЯ ВО ВЗРЫВООПАСНЫХ СРЕДАХ

Регламентируется директивами АТЕХ согласно европейской норме АТЕХ 95а. В целом, выделяются 3 основные опасные зоны.

Зона 0:

Зона, в которой взрывоопасная атмосфера из смеси воздуха и горючих газов, паров или тумана существует всегда, длительное время или часто.

Зона 20:

относится к смеси пыли и воздуха при таких же условиях.

3она 1:

Зона, в которой при обычной работе случайно может образоваться взрывоопасная атмосфера из смеси воздуха и горючих газов, паров или тумана.

Зона 21:

относится к смеси пыли и воздуха при таких же условиях.

Зона 2:

Зона, в которой при обычной работе взрывоопасная атмосфера из смеси воздуха и горючих газов, паров или тумана обычно не образуется или образуется только на короткое время.

Зона 22:

относится к смеси пыли и воздуха.

Для опасных зон 1/21 и 2/22 эластомерная муфта Servomax ЕЕх имеет допуск по АТЕХ 95а

Конструкция Servomax EEx:

Все размеры стандартных моделей сохраняются, изменяется только материал эластомерного венца.

Втулки муфты:

Как правило, применяются втулки из стандартного материала.

Эластомерный венец:

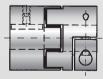
Эластомерный венец изготавливается по спецзаказу в токопроводящем исполнении (D/92 Sh A). (Предотвращает образование электростатического заряда и искрообразование)

Монтаж, параметры:

Из соображений безопасности все значения смещения и передаваемых крутящих моментов сокращены на 30% Технические характеристики предоставляются по запросу.

Техническое обслуживание:

Следует предусмотреть регулярные проверки муфты.


Инструкция по монтажу:

Точная инструкция по монтажу и техническому обслуживанию входит в комплект поставки муфты.

Индивидуальные решения R+W с использованием стандартных деталей

Все стандартные втулки и эластомерные венцы взаимозаменяемы в пределах одной серии.

Примеры:

EK 2

EK 1

Соединительная деталь ЕХ

Соединительная деталь ES

EK 2

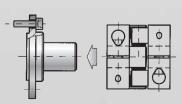
EK 6 **EKL**

Индивидуальные решения R+W с использованием специальных втулок

ЕК 2 Специальные втулки

Специальные втулки с большим диаметром отверстия

ЕК 6 Специальные втулки


Специальная втулка с фланцем

EK 2

Промежуточная деталь обеспечивает возможность большого бокового смещения

EKL

Переводный фланец для планетарной передаче по ISO 9409

Компетенция и ноу-хау R+W – выполнение Ваших индивидуальных требований

R+W Antriebselemente GmbH Alexander-Wiegand-Straße 8 D-63911 Klingenberg/Germany

Tel. +49-(0)9372 - 9864-0 Fax +49-(0)9372 - 9864-20

info@rw-kupplungen.de www.rw-kupplungen.de

QUALITÄTSMANAGEMENT Wir sind Zertifiziert Regienötige beweitige Überweitung soch 5/0/9001/2000

TGA-ZM-05-91-00 Регистр. № 4050 4 2

Изложенная выше информация опирается на наши текущий опыт и знания и не освобождает пользователя от проведения собственных комплексных проверок. Таким образом, юридически обязательная гарантия, в т.ч. применительно к правам на защиту третьих лиц, не предоставляется. Пордажа нашей продукции регламентируется нашими Общими условиями продажи и поставки.

АССОРТИМЕНТ ПРОДУКЦИИ R+W:

ПРЕДОХРАНИТЕЛЬНЫЕ МУФТЫ Модельный ряд SK

Для моментов силы 0,1 – 2 800 Hм Диаметр вала 3 – 100 мм С синхронно-угловой повторной фиксацией, с запирающим действием, с блокировкой или с разъединяющим действием, цельные или вставные

МУФТЫ С МЕТАЛЛИЧЕСКИМ СИЛЬФОНОМ Модельный ряд ВК

Для моментов силы 15 – 10 000 Нм Диаметр вала 10 – 180 мм Цельные или вставные

МУФТЫ С МЕТАЛЛИЧЕСКИМ СИЛЬФОНОМ ЭКОНОМ-КЛАСС Модельный ряд BKL

Для моментов силы 2 – 500 Hм Диаметр вала 4 – 75 мм

КАРДАННЫЕ ВАЛЫ Модельный ряд ZA / ZAE

Для моментов силы 10 – 4 000 Нм Диаметр вала 10 – 100 мм Стандартная длина до 6 м

МИНИМУФТЫ С МЕТАЛЛИЧЕСКИМ СИЛЬФОНОМ Модельный ряд МК

Для моментов силы 0,05 – 10 Hм Диаметр вала 1 – 28 мм Цельные или вставные

ЭЛАСТОМЕРНЫЕ МУФТЫ SERVOMAX® Модельный ряд EK

Для моментов силы 2 – 2 000 Нм Диаметр вала 3 – 80 мм Беззазорные, вставные

ЛИНЕЙНЫЕ МУФТЫ Модельный ряд LK

Для моментов силы 70 – 2 000 Hм Резьба М5 – М16

ГИБКИЕ МИКРОМУФТЫ Модельный ряд FK 1

Номинальный крутящий момент 1 Hcм Диаметр вала 1 – 1,5 мм