

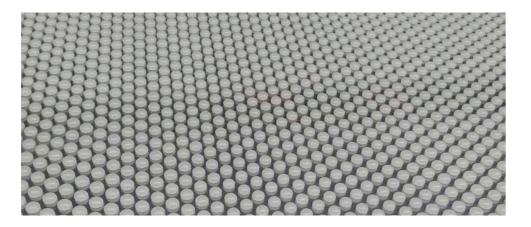
Стальные ленты для химической промышленности

Высококачественное оборудование для химических процессов

Ленты из нержавеющей стали для химической обработки

Berndorf Band Group — лидер в производстве стальных лент, ленточных систем и оказания услуг по всему миру. Широкий ряд наших решений внедрен в производственные процессы в каждой отрасли промышленности.

Одной из частей ассортимента Berndorf Band Group являются стальные ленты для химической промышленности. Стальные ленты Berndorf, изготовленные по индивидуальным требованиям — идеальное решение для этой отрасли.


Для наших стальных лент характерна высочайшая коррозионная стойкость, наилучшая теплопроводность, превосходная плоскостность, а также прямолинейный ход. Такие характеристики делают наши изделия выбором номер один для непрерывного производства.

Стальные ленты для химической промышленности

Выбор правильного материала ленты играет огромную роль для химической промышленности. Благодаря обширным исследованиям и тестам были разработаны специальные стали, отвечающие высоким требованиям химической промышленности. Наши стальные ленты - это последнее слово техники относительно своих механических, физических и геометрических характеристик. Они могут выдерживать постоянные динамические нагрузки в течение длительного периода. В качестве поставщика всесторонних решений Berndorf Band Group предлагает полные пакеты услуг и товаров,

отвечающие вашим требованиям. Для химической промышленности мы предлагаем стальные ленты, технологическое оборудование и сервисные услуги по всему миру - полноценные решения под ключ.

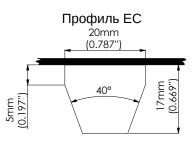
ПРЕИМУЩЕСТВА

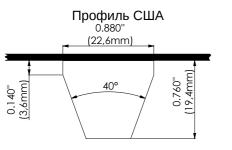
- » Высоколегированные стали с высокой коррозионной стойкостью
- » Высокая динамическая усталостная прочность обеспечивает стойкость к деформации
- » Безупречная плоскостность гарантирует равномерное охлаждение и точную транспортировку продукции

Стальные ленты для химической промышленности - физические и механические характеристики. Типовые значения

Материал			NICRO 12,1	NICRO 22	NICRO 31	NICRO 52	NICRO 52,6	NICRO 70	NICRO 85	NICRO 94	ТИТАН
Тип			CrNi 17 7	CrNiMo 17 12 2	CrNiTi 13 4	CrNiCuTi 15 7	CrNiCuTi 15 7	NiCr 22Mo 9 Nb	CrNiMoN 25 7 4	CrNiMoN 22 5 3	Grade 2
Материал-аналог		DIN AISI	1.4310 301	1.4401 316	1.4313 -	- -	-	2.4856 -	1.4410 -	1.4462 -	3.7035 -
Прочность на растяжение	при 20 °C при 68 °F	Н/мм² фунтов/дюйм²		1.100 159.500	1.080 156.600	1.150 166.800	1.550 224.800	870	1.350 195.800	1.400 203.100	390 56.600
Условный предел текучести: 0,2%	при 20 °C при 68 °F	Н/мм² фунтов/дюйм²	950 137.800	970 140.700	1.050 152.300	1.100 159.500	1.500 217.600	570	1.250 181.300	1.050 152.300	275 39.900
Твердость		по Роквеллу HRC по Виккерсу HV 10	37,0 360	33,0 330	33,0 330	37,0 360	48,0 480	24,0 260	39,0 380	36,0 350	- 160
Удлинение 50 мм / 1	,97 дюйма	%	18	12	5	8	6	25	6	9,5	20
Коэффициент прочн	ости сварного	шва	0,70	0,65	0,95	0,95	0,80	0,75	0,70	0,65	0,95
Усталостная прочность на изгибе*	при 20 °C при 68 °F	Н/мм² фунтов/дюйм²	480 69.600	440 63.800	480 69.600	500 72.500	700 101.500	475	385 55.900	450 65.300	250 36.300
Monuni vanvaoru	при 20 °C при 200 °C	Н/мм² Н/мм²	200.000 180.000	200.000 180.000	205.000	200.000 188.000	200.000 188.000	205.000	200.000 186.000	200.000 184.000	106.000 -
Модуль упругости	при 68 °F при 392 °F	1 000 фунтов/дюйм² 1 000 фунтов/дюйм²		29.000 26.100	29.700 -	29.000 27.300	29.000 27.300	200.000	29.000 27.000	29.000 26.700	15.400 -
Плотность		кг/дм³ фунт массы/дюйм³	7,90 0,29	7,95 0,29	7,70 0,28	7,74 0,28	7,74 0,28	8,44	7,80 0,28	7,80 0,28	4,53 0,16
Средний коэффициент	20—100 °C 20—200 °C 20—300 °C 20—400 °C	10 ⁻⁶ m/m°C 10 ⁻⁶ m/m°C 10 ⁻⁶ m/m°C 10 ⁻⁶ m/m°C	17,0	16,5 17,5 - -	10,8 11,2 11,7	10,9 11,5 11,7	10,9 11,5 11,7	12,8 13,1 13,3	13,0 13,5 14,0	13,3 13,8 14,2	8,5 8,9 - -
теплового расширения	68—212 °F 68—392 °F 68—572 °F 68—752 °F	10 ⁻⁶ дюйм/дюйм°F 10 ⁻⁶ дюйм/дюйм°F 10 ⁻⁶ дюйм/дюйм°F 10 ⁻⁶ дюйм/дюйм°F	-	9,2 9,7 - -	6,0 6,2 6,5 -	6,0 6,4 6,5 -	6,0 6,4 6,5 -	7,1 7,3 7,4 -	7,2 7,5 7,8 -	7,4 7,7 7,9 -	4,7 4,9 -
Удельная теплоемко	ОСТЬ	Дж/г °С БТЕ/фунт °F	0,50 0,12	0,50 0,12	0,46 0,11	0,50 0,12	0,50 0,12	0,41 0,10	0,50 0,12	0,50 0,12	0,52 0,12
Теплопроводность	при 20 °C при 68 °F	Вт/м °С БТЕ/ч∙фут °F	15 8,7	15 8,7	21 12,1	16 9,2	16 9,2	9,8 5,7	15 8,7	15 8,7	20 11,6
Удельное электрическое сопротивление	при 20 °C при 68 °F	Ω мм²/м Ω мил²/дюйм °F	0,73 28,74	0,75 29,53	0,60 23,62	0,80 31,50	0,80 31,50	1,29 50,79	0,80 31,50	0,80 31,50	0,78 30,71
Мин. допустимая рабочая температур	a	°C °F	-196 -321	-196 -321	-	- -	-	-196 -321	-50 -58	-50 -58	-
Макс. допустимая рабочая температур	a	°C °F		250 480	350 660	350 660	350 660	300 570	250 480	250 480	250 480
Прочность на растяже допустимой рабочей т		Н/мм² фунтов/дюйм²	940 136.300	870 126.200	970 140.700	900 130.500	1.250 181.300	70 111.700	1.070 155.200	1.130 163.900	225 32.600
Условный предел текуче макс. допустимой рабочк		Н/мм² фунтов/дюйм²	770 111.700	770 111.700	930 134.900	830 120.400	1.180 171.100	420 60.900	1.020 147.900	990 143.800	135 19.600

Направляющие профили и ограничительные планки


Стальные ленты могут быть оснащены направляющими профилями и/или ограничительными планками. Специально разработанный процесс склеивания обеспечивает оптимальную адгезию даже в сложных производственных условиях.


Термостойкие направляющие кромки для обеспечения принудительного направления стальной ленты

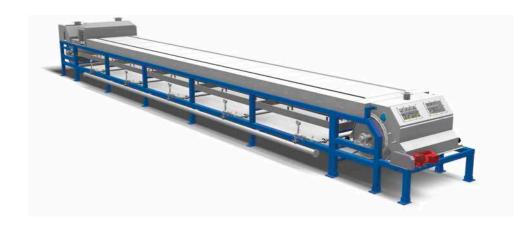
Материал направляющей	Рабочие температуры				
Нитрил каучук	от –20 до +100 ° C от –4 до +212 ° F				
Натуральный каучук	от –60 до +60 ° С от –76 до +140 ° F				
Спиралевидная направляющая кромка из нержавеющей стали	более +100 ° С более +212 ° F				

Ограничительные планки для предотвращения стекания пролдукта

Материал ограничительных планок	Рабочие температуры				
Нитрил каучук	от –20 до +100 ° С от –4 до +212 ° F				
Натуральный каучук	от –60 до +60 ° С от –76 до +140 ° F				
Силиконовый каучук	от –80 до +300 ° С от –112 до +572 ° F				

Контроль смещения и натяжения ленты, направляющие и поддерживающие шкивы

Для поддержания постоянного натяжения ленты в наличии широкий ассортимент направляющих и поддерживающих шкивов, а также альтернативных систем контроля и натяжения ленты. Для получения дополнительной информации, включая обзор решений по контролю смещения и натяжения ленты обращайтесь к местному представителю Berndorf Band Group или посетите сайт www.berndorfband-group.com.



Технологическое оборудование

Будучи поставщиком полного комплекса услуг, мы предлагаем полные пакеты и поддержку на всех этапах вашего проекта. Технологическое оборудование Berndorf предусматривает разработку, проектирование, установку и обслуживание систем стальных лент для отверждения и охлаждения. Технологическое оборудование применяется главным образом в химической и нефтехимической отраслях, но применение наших технологий может оказаться полезным и во многих других сферах, включая производство серы или порошковых красок.

Системы охлаждения

Системы охлаждения Berndorf включают одно- и двухленточные охладители, использующиеся во многих производственных процессах для охлаждения расплавленных продуктов. Выбор используемой системы зависит главным образом от вязкости перерабатываемого материала. Продукты с вязкостью, плотностью и удельной теплоемкостью от низкой до средней обычно обрабатываются одноленточным охладителем. Сырьевые материалы с вязкостью от средней до высокой обрабатываются двухленточными охладителями.

Устройства подачи

В Berndorf Group разработан целый ряд устройств подачи, подходящий под различные технологические требования для производства широкого ряда продуктов. Гибкие возможности применения обеспечивают производство материалов с вязкостью от низкой до высокой и температурой плавления вплоть до 300 °C | 572 °F, а также производство гранул и брикетов различных размеров при помощи смены наружной оболочки и форсуночной балки, с планкой повторной подачи или без нее. Доступные устройства подачи -berndrop® и bernflow®.

7

Сфера применения стальных лент и ленточных систем Berndorf Band Group весьма широка, и каждый конкретный случай ориентируется на ваши индивидуальные требования. Предоставьте нам возможность обсудить ваши цели на личной встрече. Вместе мы найдем подходящее решение, отвечающее вашим требованиям.

Доступ к нашей всемирной торгово-сервисной сети можно получить на веб-сайте www.berndorfband-group.com

Berndorf Belt Technology

USA Inc./ SBS Steel Belt

Berndorf Band **Engineering GmbH**

Leobersdorfer Strasse 26 2560 Berndorf, Austria T: +43 2672 800 0 E: engineering@berndorf.co.at

Sondermaschinenbau GmbH

T: +43 2672 835 700 E: office@berndorf-bsg.at Nippon Belting Co., Ltd.

Berndorf Steel Belt

Systems Ltd., Co.

#15, Bodeum 2-ro

South Korea

Seo-gu, 22664 Incheon,

1-24-6. Kanda Suda-cho Chivoda-ku 101-0041. Tokyo, Japan T: +81 03 3257 3050

E: toiawase@nippon-belting.com

59 Prairie Parkway Gilberts, Illinois 60136, USA T: +1 847 841 330 0 E: sales@berndorf-usa.com

Systems USA Inc.

Berndorf Band Latinoamerica S.A.S.

Cra 46 # 62 sur 33 Medellín, Colombia T: +57 313 605 31 99 E: office@berndorf-lat.com Beijing Berndorf Technology Development China Co., Ltd.

No 17, Xinggu West RD, Xinggu Economic & Development Zone, Pinggu 101200 Beijing, China T: +86 108 072 390 1 E: sales@berndorf.com.cn

Berndorf Band GmbH

Leobersdorfer Strasse 26 2560 Berndorf, Austria

T: +43 2672 800 0

E: band@berndorf.co.at

T: +82 328 160 432 E: bsbs@berndorf.co.kr